Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information

Synthesis, biological evaluation, substitution behaviour and DFT study of Pd(II) complexes incorporating benzimidazole derivative

Ishani Mitra^a, Subhajit Mukherjee^a, Venkata P. Reddy B.^a, Bashkim Misini^b, Payel Das^c, Subrata Dasgupta^a, Wolfgang Linert^b and Sankar Ch. Moi^{*a}

a. Department of Chemistry, National Institute of Technology, Durgapur-713209, W.B. India

b. Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt, 9/163-AC, 1060 Vienna, Austria

c. Department of Biotechnology, National Institute of Technology, Durgapur-713209, W.B. India

1	SUP. Fig. S1	IR spectra of C1 in KBr disk.
2	SUP. Fig. S2	¹ H NMR spectra of C1 in DMSO-D ₆ .
3	SUP. Fig. S3	ESI mass spectra of C1 in DMSO.
4	SUP. Fig. S4	IR spectra of C2 in KBr disk.
5	SUP. Fig. S5	¹ H NMR spectra of C2 in DMSO-D ₆ .
6	SUP. Fig. S6	IR spectra of C3 in KBr disk.
7	SUP. Fig. S7	¹ H NMR spectra of C3 in D_2O .
8	SUP. Fig. S8	ESI mass spectra of C3 in water.
9	SUP. Fig. S9	IR spectra of C4 in KBr disk.
10	SUP. Fig. S10	¹ H NMR spectra of C4 in DMSO-D ₆ .
11	SUP. Fig. S11	ESI mass spectra of C4 in water.
12	SUP. Fig. S12	IR spectra of C5 in KBr disk.
13	SUP. Fig. S13	¹ H NMR spectra of C5 in DMSO-D ₆ .
14	SUP. Fig. S14	ESI mass spectra of C5 in water.
15	SUP. Fig. S15	IR spectra of C6 in KBr disk.
16	SUP. Fig. S16	¹ H NMR spectra of C6 in D_2O .
17	SUP. Fig. S17	ESI mass spectra of C6 in water.
18	SUP. Fig. S18	pH vs. volume (ml) of 0.025 M KOH solution (HP1 and HP2 correspond to
		pKa1 and pKa2 respectively).
19	SUP. Fig. S19	Job's plot for the formation of complexes C3-C6 at pH 4.0.
20	SUP. Fig. S20	Scan overlay at 2-min interval of the reaction of C2 with NALC and GSH.
		[C2] = 4.71 x 10 ⁻⁴ M, [NALC/GSH] = 4.71 x 10 ⁻³ M, pH = 4.0, 25 °C.
21	SUP. Fig. S21	Typical absorbance-time trace for the reaction of C2 with L-cys fitted with
		two exponential functions. The top of the figure shows the absorbance
		difference between measured and calculated kinetic traces. [C2] = 4.71×10^{-10}
		⁴ M; [L-cys] = 4.71×10^{-3} M; pH = 4.0 , λ = 250 nm; T = 25 °C.
22	SUP. Fig. S22	Plot of $10^{-4} \times k_{1(obs)}$ versus $10^{3} \times [Nu]$ at different temperatures.
23	SUP. Fig. S23	Plot of 1/ $k_{1(obs)}$ versus 1/ [Nu] at different temperatures.
24	SUP. Fig. S24	Eyring plots (In k_1h/k_BT vs 10 ³ ×1/T and In k_2h/k_BT vs 10 ³ ×1/T) for the
		reaction of C2 with L-cys, NALC, DL-pen and GSH.
25	SUP. Fig. S25	Experimental (in pink) and simulated (in black) UV-Vis spectrum of the
		Pd(II) complexes C3-C6 in CPCM/water (Simulation done at
		TDDFT/B3LYP/6-31G(d)/6-31G+(d)/LANL2DZ level of theory).
26	SUP. Fig. S26	UV spectra of 20 μM of (A) $\textbf{C3}$ (B) $\textbf{C4}$ (C) $\textbf{C5}$ and (D) $\textbf{C6}$ in Tris-HCl buffer in

Table of contents

		the presence of increasing amounts of CT-DNA (0–200 μ M). The arrow
		indicates the chenges in the absorbance on addition of DNA. Inset: linear
		fit of $[DNA]/(\varepsilon_a - \varepsilon_f)$ vs. $[DNA]$.
27	SUP. Fig. S27	Emission spectra for EB–DNA ([EB] = 20 μ M, [DNA] = 20 μ M) in the absence
		and presence of increasing amounts of (A) C3 (B) C4 (C) C5 and (D) C6. The
		arrow shows the changes of intensity upon increasing amount of
		complexes. Inset: Plot of I ₀ /I versus [complex].
28	SUP. Fig. S28	Scatchard plot for DNA binding of complexes C1-C6 .
29	SUP. Fig. S29	Effect of increasing amounts of EB and studied Pd(II) complexes on the
		relative viscosity of CT-DNA at 25°C.
30	SUP. Fig. S30	Computational docking models illustrating the interactions of (A) C3 , (B)
		C4, (C) C5 with 1DNE and of (D) C6 with 1DSC.
31	SUP. Fig. S31	Magnified view of the docked models showing the interaction of
		complexes C1-C6 with DNA base pairs.
32	SUP. Fig. S32	Absorption spectra of BSA (10 μ M) in Tris-HCl buffer in presence of the
		complexes C1–C6 (5 μM).
33	SUP. Fig. S33	Emission spectra of BSA (1.0 μ M) in Tris-HCl buffer(pH 7.0) at 298 K in
		presence of (A) C1 , (B) C3 and (C) C4 (5-60 μ M). The arrow shows the
		emission intensity changes upon increasing complex concentration. Insets:
		Stern-Volmer plot showing tryptophan quenching in BSA.
34	SUP. Fig. S34	Scatchard plot for BSA binding of complexes C1-C6.
35	SUP. Fig. S35	Growth Inhibition (%) of MDA-MB-231, A549, and HepG2 cell lines in
		presence of complex C1-C6 and Cisplatin (5-50 μM).
36	SUP. Table S1	$10^{-3} \times k_{1(obs)}$ (s ⁻¹) and $k_{2(obs)}$ (s ⁻¹) values at different [ligand] at different
		temperatures; $[C2] = 4.71 \times 10^{-4} \text{ M}$, pH = 4.0, ionic strength = 0.1 M NaClO ₄
		(Herein "± values" represent standard error values)
37	SUP. Table S2	Energy and composition of some selected MOs of C3-C6.
38	SUP. Table S3	Occupancy (e) and polarity (%) of natural bond orbitals (NBOs) and hybrids
		calculated for complex C4-C6 .
39	SUP. Table S4	Selected vertical excitations calculated by TDDFT/B3LYP/6-31G(d)/6-
40	SUR Table S5	$S_1O_1(u)/LANL2DZ/CFCW/Water for CS-CO.$
40	501. Table 55	titration.
41	SUP. Table S6	Hydrogen bonding interactions and the binding free energy of the most
		stable docking conformations for complexes C1–C6 docked into DNA.
42	SUP. Table S7	IC_{50} values (in μM) of the complexes $\mbox{C1-C6}$ and cisplatin on different
		cancer cell lines for 48 hrs incubation.
43	SUP. Equation S1	Wolfe-Shimer equation
44	SUP. Equation S2	Free energy of binding
45	SUP. Equation S3	Stern–Volmer equation
46	SUP. Equation S4	Scatchard equation

Sup. Fig. S1 IR spectrum of C1

Sup. Fig. S2 ¹H NMR spectrum of **C1** in DMSO-D₆

Sup. Fig. S3 ESI-Mass spectrum of C1 in DMSO

Sup. Fig. S4 IR spectrum of C2

Sup. Fig. S5 ¹H NMR spectrum of **C2** in mixed solvent DMSO-D₆

Sup. Fig. S7 ¹H NMR spectrum of C3 in D_2O

Sup. Fig. S8 ESI-Mass spectrum of C3 in water

Sup. Fig. S9 IR spectrum of C4

Sup. Fig. S10 ¹H NMR spectrum of **C4** in DMSO-D₆

Sup. Fig. S11 ESI-Mass spectrum of C4 in water

Sup. Fig. S12 IR spectrum of C5

Sup. Fig. S13 ¹H NMR spectrum of **C5** in DMSO-D₆

Sup. Fig. S15 IR spectrum of C6

Sup. Fig. S16 ^1H NMR spectrum of C6 in D_2O

Sup. Fig. S17 ESI-Mass spectrum of C6 in water

Sup. Fig. S18 Plot of pH vs volume (mL) for the titration of 1.00×10⁻⁴ M solution of **C2** using standard 0.025 M KOH.

Sup. Fig. S19 Job's plot for the formation of complexes **C3-C6** at pH 4.0.

Sup. Fig. S20 Scan overlay at 2-min interval of the reaction of **C2** with NALC and GSH. [**C2**] = 4.71×10^{-4} M, [NALC/GSH] = 4.71×10^{-3} M, pH = 4.0, 25 °C.

Sup. Fig. S21 Typical absorbance-time trace for the reaction of **C2** with L-cys fitted with two exponential functions. The top of the figure shows the absorbance difference between measured and calculated kinetic traces. [**C2**] = 4.71×10^{-4} M; [L-cys] = 4.71×10^{-3} M; pH = 4.0, λ = 250 nm; T = 25 °C.

Sup. Fig. S22 Plot of $10^{-4} \times k_{1(obs)}$ versus $10^{3} \times [Nu]$ at different temperatures. (A) L-cys, (B) NALC, (C) DL-pen, (D) GSH

Sup. Fig. S23 Plot of 1/ $k_{1(obs)}$ versus 1/ [Nu] at different temperatures. (A) NALC, (B) DL-pen, (C) GSH

Sup. Fig. S24 Eyring plots (In k_1h/k_BT vs $10^3 \times 1/T$ and In k_2h/k_BT vs $10^3 \times 1/T$) for the reaction of **C2** with L-cys, NALC, DL-pen and GSH.

Sup. Fig. S25 Experimental (in pink) and simulated (in black) UV-Vis spectrum of the Pd(II) complexes C3-C6 in CPCM/water (Simulation done at TDDFT/B3LYP/6-31G(d)/6-31G+(d)/LANL2DZ level of theory).

Sup. Fig. S26 UV spectra of 20 μ M of (A) **C3** (B) **C4** (C) **C5** and (D) **C6** in Tris-HCl buffer in the presence of increasing amounts of CT-DNA (0–200 μ M). The arrow indicates the chenges in the absorbance on addition of DNA. Inset: linear fit of [DNA]/($\mathcal{E}_a - \mathcal{E}_f$) vs. [DNA].

Sup. Fig. S27 Emission spectra for EB–DNA ([EB] = 20 μ M, [DNA] = 20 μ M) in the absence and presence of increasing amounts of (A) **C3** (B) **C4** (C) **C5** and (D) **C6**. The arrow shows the changes of intensity upon increasing amount of complexes. Inset: Plot of I₀/I versus [complex].

Sup. Fig. S28 Scatchard plot for DNA binding of complexes C1-C6.

Sup. Fig. S29 Effect of increasing amounts of EB and studied Pd(II) complexes on the relative viscosity of CT-DNA at 25°C.

Sup. Fig. S30 Computational docking models illustrating the interactions of (A)**C3**, (B)**C4**, (C)**C5** with 1DNE and (D) **C6** with 1DSC.

SUP. Fig. S31 Magnified view of docked model showing the interaction of DNA bases with (A) **C1**, (B) **C2**, (C) **C3**, (D) **C4**, (E) **C5** and (F) **C6**.

Sup. Fig. S32 Absorption spectra of BSA (10 μ M) in Tris-HCl buffer in presence of the complexes **C1–C6** (5 μ M).

Sup. Fig. S33 Emission spectra of BSA (1.0 μM) in Tris-HCl buffer(pH 7.0) at 298 K in presence of (A) C3, (B) C4,
(C) C5 and (D) C6(5-60 μM). The arrow shows the emission intensity changes upon increasing complex concentration. Insets: Stern-Volmer plot showing tryptophan quenching in BSA.

Sup. Fig. S34 Scatchard plot for BSA binding of complexes C1-C6.

Sup. Fig. S35 Growth Inhibition (%) of MDA-MB-231, A549, and HepG2 cell lines in presence of complex **C1-C6** and Cisplatin (5-50 μM).

Sup. Table S1. $10^{-3} \times k_{1(obs)}$ (s ⁻¹) and $k_{2(obs)}$ (s ⁻¹) values at different [ligand] at different temperatures; [C2] = 4.	71
×10 ⁻⁴ M, pH = 4.0, ionic strength = 0.1 M NaClO ₄ (Herein " \pm values" represent standard error values)	

Ligand	Conc.		k _{1(obs)} x	10⁻³ (S ⁻¹)			k _{2(ok}	os) (S⁻¹)	
	(×10 ³	15ºC	25ºC	35⁰C	45ºC	15ºC	25ºC	35ºC	45ºC
	M)								
	4.71	3.26±0.08	5.75±0.06	9.27±0.09	13.58±0.11	1.51±0.04	1.97±0.04	2.90±0.06	4.13±0.05
	7.06	4.24±0.03	7.38±0.05	11.84±0.07	17.22±0.08	1.55±0.07	2.01±0.03	2.94±0.04	4.20±0.10
Ś	9.42	4.99±0.07	8.60±0.04	13.75±0.03	19.88±0.04	1.46±0.08	2.03±0.02	3.00±0.07	4.17±0.06
Ľ	11.77	5.58±0.04	9.55±0.07	15.21±0.10	21.91±0.05	1.43±0.03	1.96±0.06	3.02±0.03	4.23±0.08
	14.13	6.06±0.12	10.30±0.12	16.38±0.06	23.51±0.09	1.60±0.02	2.08±0.06	2.84±0.10	4.12±0.09
	4.71	2.48±0.03	3.91±0.06	7.15±0.08	10.78±0.10	1.15±0.04	1.69±0.01	2.66±0.04	3.71±0.07
	7.06	3.38±0.08	5.07±0.09	8.95±0.07	14.11±0.06	1.23±0.02	1.74±0.04	2.61±0.06	3.66±0.05
LC LC	9.42	3.84±0.11	6.17±0.03	10.66±0.05	16.14±0.08	1.19±0.07	1.78±0.08	2.59±0.02	3.59±0.04
Ž	11.77	4.32±0.02	6.50±0.07	12.17±0.09	17.49±0.05	1.13±0.03	1.69±0.07	2.70±0.03	3.74±0.08
	14.13	4.69±0.05	7.31±0.09	12.78±0.04	19.34±0.12	1.27±0.08	1.80±0.05	2.64±0.09	3.60±0.03
	4.71	1.46±0.12	2.99±0.04	5.05±0.07	8.89±0.03	0.53±0.04	0.75±0.03	1.09±0.07	1.63±0.05
	7.06	2.00±0.04	3.89±0.05	6.75±0.10	11.29±0.09	0.46±0.03	0.69±0.05	1.13±0.04	1.72±0.02
-pe	9.42	2.39±0.07	4.77±0.08	7.86±0.03	13.06±0.05	0.51±0.07	0.78±0.08	1.05±0.06	1.67±0.06
Ъ.	11.77	2.68±0.09	5.20±0.09	8.80±0.05	15.00±0.06	0.40±0.05	0.80±0.02	1.02±0.03	1.63±0.08
	14.13	2.86±0.05	5.66±0.13	9.34±0.06	15.85±0.11	0.41±0.06	0.73±0.04	1.16±0.08	1.70±0.05
	4 71	6 84+0 08	10 66+0 09	16 13+0 04	23 35+0 07	4 17+0 02	5 38+0 07	7 56+0 06	9 70+0 08
	7.06	8 67+0 13	13 83+0 07	20 50+0 10	29.55±0.07	4.17±0.02	5.30±0.07	7.30±0.00	9.70±0.00
т	0.42	10.28+0.06	15.83±0.07	20.30±0.10	20.04±0.07	4.1110.07	5.42±0.08	7.33±0.03	9.09±0.03
<u>esi</u>	9.4Z	11.28±0.00	17.12+0.09	25.14±0.09	32.3110.13	4.0810.03	5.3110.04	7.47±0.03	9.8010.07
_	14.12	12.07.0.02	10 5010 04	20.20±0.07	30.58±0.09	4.01±0.06	5.43±0.03	7.50±0.04	9.05±0.00
	14.13	12.07±0.03	18.58±0.04	27.03±0.11	38.52±0.06	4.18±0.05	5.30±0.06	7.43±0.11	9.71±0.04

Sup. Table S2. Energy and composition of some selected MOs of C3-C6.

		(C3				C4			(C5				C6	
мо	E (eV)	%	of composit	ion	E (eV)	%	of composit	ion	E (eV)	%	of composit	ion	E (eV)	%	of composi	tion
		Pd	Ambim	L		Pd	Ambim	L		Pd	Ambim	L		Pd	Ambim	L
L+3	0.01	50	31	19	0.14	12	82	6	0.01	47	22	31	-0.17	2	1	97
L+2	-0.18	29	4	67	0.08	54	22	24	-0.24	32	5	63	-0.42	7	3	90
L+1	-1.06	2	98	0	-1.01	1	98	0	-1.07	1	98	0	-1.14	1	98	1
LUMO	-2.46	51	20	29	-2.22	51	19	31	-2.42	51	20	29	-2.51	51	20	29
номо	-5.98	20	8	73	-5.73	18	4	78	-5.94	19	6	75	-5.92	1	0	99
H-1	-6.69	4	86	9	-6.57	39	39	22	-6.68	6	86	9	-5.98	15	1	84
H-2	-6.76	5	93	2	-6.62	28	45	27	-6.77	7	91	2	-6.13	0	0	100
H-3	-6.85	71	10	19	-6.72	8	34	57	-6.84	67	15	18	-6.29	0	0	99

Sup. Table S3. Occupancy (e) and polarity (%) of natural bond orbitals (NBOs) and hybrids calculated^(a) for **C4-C6**.

System	NBO Orbital ^(b)	Occupancy	Polarity ^(c)	NBO Hybrid	Atomic Orbitals ^(d)
	σPt-S	1.83058	22.47 (Pd)	sd ^{2.05}	s(25.30%) p(22.77%) d(51.93%)
C4			77.33 (S)	sp ^{7.08}	s(12.37%) p(87.63%)
	LP(O1)	1.72674	-	sp ^{4.19}	s(17.04%) p(71.40%)
	LP(N2)	1.68079	-	sp ^{4.25}	s(19.05%) p(80.95%)
	LP(N3)	1.65421	-	sp ^{6.21}	s(14.38%) p(89.30%)
	σPt-S	1.96833	35.87 (Pd)	sd ^{5.40}	s(14.15%) p(9.41%) d(76.45%)
C5			64.13 (S)	sp ^{7.61}	s(11.62%) p (88.38%)
	LP(O1)	1.67459	-	sp ^{5.71}	s(14.90%) p(85.10%)
	LP(N2)	1.67554	-	sp ^{5.20}	s(16.12%) p(83.88%)
	LP(N3)	1.65142	-	sp ^{2.69}	s(27.13%) p(72.86%)
	σPt-S	1.98535	22.09 (Pd)	sd ^{8.40}	s(10.00%) p(5.95%) d(84.05%)
C6			77.91 (S)	sp ^{3.71}	s(22.08%) p(77.78%)
	LP(O1)	1.70257	-	sp ^{5.54}	s(15.30%) p(84.70%)
	LP(N2)	1.63588	-	sp ^{8.27}	s(10.78%) p(89.16%)
	LP(N3)	1.65142	-	sp ^{6.01}	s(12.06%) p(72.48%)

(a) Calculations performed at B3LYP/ LANL2DZ /6-31G(d)/6-31G+(d) level of theory. (b) LP(N/O) is a valence lone pair orbital on nitrogen/oxygen atom. (c) Values for A–B sigma molecular orbital. (d) Percentage contribution of atomic orbitals in NBO hybrid.

Complex	E _{ex} (eV)	λ _{ex} (nm)	λ _{max} (expt.) (nm)	Osc. Strength (f)	Key transitions	Assignments
-	6.09	203	204	0.2562	H-14→LUMO (18%),	Ambim(π)/NALC(π)→Pd(dπ),
C4					H-1→L+3 (18%),	LMCT
					H-13→LUMO (14%)	
	5.25	236	-	0.2449	HOMO→L+4 (36%),	Ambim(π)→Pd(dπ)/NALC(π*),
					HOMO→L+2 (21%),	LMCT/LLCT
					H-11→LUMO (13%),	
					H-8→LUMO (11%)	
	4.65	267	270	0.2547	H-8→LUMO (45%),	Ambim(π)→Pd(dπ)/NALC(π*),
			278		H-11→LUMO (15%)	LMCT/LLCT
	3.92	316	-	0.0756	H-3→LUMO (37%),	NALC(π)/Ambim(π)→Pd(dπ),
					H-4→LUMO (25%),	LMCT
					H-2→LUMO (17%),	
					H-6→LUMO (12%)	
	5.76	215	210	0.1399	H-5→LUMO (54%),	Ambim(π)/DL-pen(π)→Pd(dπ),
					H-8→LUMO (17%)	LMCT
C5	5.00	248	244	0.1881	H-2→L+1 (53%),	Pd(dπ)/DL-pen(π)→Ambim(π*),
					H-3→L+1 (35%)	MLCT/LLCT
	4.50	275	272	0.1436	H-11→LUMO (45%),	DL-pen(π)→Pd(dπ)/Ambim(π*),
			278		H-12→LUMO (19%)	LMCT/LLCT
	5.66	219	223	0.1168	H-7→L+2 (58%),	Ambim(π)/Pd(d π) \rightarrow GSH(π^*)
					H-9→L+2 (30%)	LLCT/MLCT
C6	5.03	250		0.1747	H-10→LUMO (73%)	$GSH(\pi)/Pd(d\pi) \rightarrow Ambim(\pi^*).$
			272			LLCT/MLCT
	4.25	291	278	0.1965	H-8→L+1 (67%),	$GSH(\pi) \rightarrow Pd(d\pi)/Ambim(\pi^*),$
					H-7→L+4 (15%)	LMCT/LLCT

Sup. Table S4. Selected vertical excitations calculated by TDDFT/B3LYP/6-31G(d)/6-31G+(d)/LANL2DZ /CPCM/water for **C3-C6**.

Sup. Table S5. Band shift (nm) and free energy (kJ mol⁻¹) of DNA binding by absorption titration.

Complex	Band shift	∆G (kJ mol⁻¹)
	Δλ (nm)	
C1	7	-27.18
C2	4	-26.99
С3	6	-26.37
C4	7	-26.22
C5	6	-26.07
C6	-2	-25.22

		H-bonding		
Complex	Donor (D–H)	Acceptor (H…A)	H…A (Å)	ΔG (kJ mol⁻¹)
	N _{im} (Ambim)	N (DC-13)	2.80	
C1	N _{im} (Ambim)	N (DG-4)	3.43	-26.36
	N _{im} (Ambim)	O (DG-4)	3.16	
	N _{im} (Ambim)	N (DG-4)	3.39	
C2	N _{im} (Ambim)	O (DG-4)	3.11	-25.94
	N _{am} (Ambim)	N (DC-13)	3.29	
C3	N _{im} (Ambim)	N (DG-4)	2.90	-25.10
	N _{im} (Ambim)	N (DG-4)	3.29	
C4	N (DG-4)	N _{im} (Ambim)	3.39	-25.52
	N (DG-4)	N _{im} (Ambim)	3.49	
C5	N (DG-12)	N _{im} (Ambim)	3.02	-24.69
	N (DG-12)	N _{im} (Ambim)	3.06	
	O (GSH)	O (DA-19)	2.80	
C6	O (DT-8)	O (GSH)	3.49	-25.10
	N (DT-8)	N (GSH)	2.92	
	O (DT-18)	N (GSH)	3.28	

Sup. Table S6 A few hydrogen bonding interactions and the binding free energy of the most stable docking conformations for complexes **C1–C6** docked into DNA.

Sup. Table S7. IC_{50} values (in μ M) of the complexes **C1-C6** and cisplatin on different cancer cell lines for 48 hrs incubation.

		IC₅₀ (μM)	
Complex	MDA-MB-231	A549	HepG2
C1	19.4 ± 0.5	23.5 ± 0.8	25.2 ± 0.5
C2	21.2 ± 0.6	24.1 ± 1.0	30.1 ± 0.9
C3	26.0 ± 0.9	29.7 ± 0.7	33.2 ± 0.4
C4	27.9 ± 1.2	31.2 ± 0.6	31.7 ± 0.9
С5	33.4 ± 0.7	30.8 ± 0.4	38.0 ± 1.3
C6	31.5 ± 0.6	32.3 ± 0.9	35.4 ± 1.0
Cisplatin	37.1 ± 1.1	19.0 ± 0.7	14.3 ± 0.8

ESI Equation S1. Wolfe-Shimer equation

The intrinsic binding constant (k_b) for all the studied complexes has been evaluated by using Wolfe-Shimer equation [1].

$$[\mathsf{DNA}]/[\mathcal{E}_a-\mathcal{E}_f] = [\mathsf{DNA}]/[\mathcal{E}_b-\mathcal{E}_f] + 1/\{\mathsf{K}_b\times[\mathcal{E}_b-\mathcal{E}_f]\}$$

Where, [DNA] is the concentration of CT-DNA in base pairs, \mathcal{E}_{a} , \mathcal{E}_{f} , \mathcal{E}_{b} correspond to the extinction coefficient of observed (A_{obsd}/[M]), free complex and of the complex when fully bound to CT-DNA respectively. [DNA]/(\mathcal{E}_{a} - \mathcal{E}_{f}) versus [DNA] has been plotted and the slope to intercept ratio gives the magnitude of K_b for each of the complexes.

ESI Equation S2. Free energy of binding

ESI Equation 2 has been used to calculate the free energy (ΔG) of binding for complex-DNA adduct formation [2].

$$\Delta G = -RT \ln K_b$$

ESI Equation S3. Stern–Volmer equation

$$I_0/I = 1 + K_{sv}[Q] = 1 + k_q \tau_o$$

 I_0 and I are the fluorescence intensities at 587 nm in absence and presence of the quencher 'Q' [Pd(II) complexes] respectively. K_{sv} , the linear Stern-Volmer quenching constant [3] was determined by linear regression of a plot of I_o/I vs [Q]. k_q is the bimolecular quenching constant and τ_0 is the lifetime of the chromophore in the absence of the quencher ($\tau_0 = 23 \times 10^{-9}$ s for EB-bound DNA).[4]

ESI Equation S4. Scatchard equation

$$\log (I_0 - I)/I = \log K_F + n \log [Q]$$

log (I₀ - I)/I versus log [Q] has been plotted and fitted linearly. Intercept will provide the binding constant $K_{\rm F}$. The number of binding sites per nucleotide i.e., 'n' has been obtained from the slope [5].

References

[1] A. Wolfe, G.H. Shimer and T. Meehan, *Biochem.*, 1987, 26, 6392.

[2] K. Karami, Z. M. Lighvan, S. A. Barzani, A. Y. Faal, M. Poshteh-Shirani, T. Khayamian, V. Eignerc and M. Dus^{*}ek, *New J. Chem.*, 2015, **39**, 8708.

- [3] H. Akbaş, A. Karadağ, A. Aydın, A. Destegül and Z. Kılıç, J. Mol. Liq., 2017, 230, 482.
- [4] D. P. Heller and C. L. Greenstock, *Biophys. Chem.*, 1994, **50**,305.
- [5] J. Min, X. M. Meng-Xia, Z. Dong, L. Yuan, L. Xiao-Yu and C. Xing, J. Mol. Struct., 2004, 692, 71.