Supporting information

Synthesis of porous CoMoO₄ nanorods as a bifunctional cathode catalyst for Li-O₂ battery and superior anode for Li-ion battery

Liangjun Wang, $\ddagger^{a,b}$ Xinhang Cui, \ddagger^{b} Lili Gong,^b Zhiyang Lyu,^c Yin Zhou,^c Wenhao Dong,^c Jia Liu,^d Min Lai,^a Fengwei Huo,^e Wei Huang,^e Ming Lin^f and Wei Chen*^{b,c,g,h,i}

^aSchool of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China

^bDepartment of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore

^cDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore

^dDivision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore

^eInstitute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China

^fInstitute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way. Innovis, 138634, Singapore

^gCentre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546, Singapore

^hSZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Shenzhen University, Shenzhen 518060, China

ⁱNational University of Singapore (Suzhou) Research Institute, Suzhou, 215123, China

E-mail: phycw@nus.edu.sg; Fax: +65-6777 6126; Tel: +65-6516 2921

[‡]These authors contributed equally to this work.

Fig. S1 (a) XRD pattern, (b) TGA curve and SEM image of CoMoO₄ precursor before annealing.

TGA analysis: The first weight loss below 100 °C is due to the release of physi-/chemi-sorbed water at or within the surface while the second loss between 200 °C and 300 °C can be ascribed to be evolution of crystal water from hydrate crystal phase. The third loss, which starts from 350 °C, can be assigned to the release of water from CoMoO₄ phase, as the hydrate crystal structure has converted into CoMoO₄ phase under this temperature range.¹⁻²

Fig. S2 Full discharge/charge cycling performance of (a) $CoMoO_4$ nanorods and (b) VX-72 carbon based Li-O₂ batteries at a current density of 0.16 mA/cm².

Fig. S3 SEM images of CoMoO4 electrode at (a) pristine, (b) 1st discharge, (c) first charge and (d) 4th charge states.

REFERENCES

1. D. Guo, H. Zhang, X. Yu, M. Zhang, P. Zhang, Q. Li and T. Wang, *J. Mater. Chem. A*, 2013, **1**, 7247.

2. W. Xiao, J. S. Chen, C. M. Li, R. Xu and X. W. Lou, *Chem. Mater.*, 2010, 22, 746-754.