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Supplementary Figure 1. Structure of CL4 ligands. The pl of the ammonium group is 9.06 and
the carboxylate groups are 3.29 and 3.93.

Supplementary Figure 2. Effect of TMB concentration on the kinetics of HRP. The activity of
HRP (1 nM) was measured at various concentrations of TMB using 1 mM H20: as a substrate.
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Supplementary Figure 3. HRP (1 nM), either with or without 2 equivalents of 520 QD, was
incubated in a reaction mixture containing a final concentration of 1 mM TMB at 30 °C for varying
lengths of time prior to initiation of the reaction by the addition of 1 mM HOz. The initial kinetics
were recorded and plotted.
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Supplementary Figure 4. Effect of buffers, pH, and salt concentration on the QD-dependent rate
enhancement of HRP. Rate enhancement was calculated as the ratio of initial rates for samples
containing 2 equivalents of 520 QD per HRP to the rate of HRP lacking QD.
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COPASI Modeling of HRP Inactivation by H20:.

Modeling Methods

The kinetics of HRP at H20. concentrations of >1 mM were modeled using a dead-end
inhibition model. The parameter estimation function of COPASI kinetic modeling software was
used to obtain rate constants for the modeled reactions. The inhibition of HRP was modeled using
reactions SC1 (Supplementary COPASI 1) and SC2.

SC1) H,0, + HRP + TMB - HRP + DTMB
SC2) HRP + H,0, - HRPppactive

The HRP reaction was modeled using equation SC3. In these studies the Ku values for equation
SC3 were fixed to the values derived from the Michaelis-Menten fits at lower H,O> concentrations.
The inactivation mechanism was modeled in one of two ways (equations SC4a and SC4b).
Equation SC4a was eventually used to obtain the inactivation rate constant for the reactions.

_ [H20:]1X[HRP]XKkcqat
SC3) "~ Km+[H20;]
SC4a) Vlnactivation = kInactivate X [HZOZ] X [HRP]
[H,0,] X [HRP] X knactivat
SC4b) Vlnactivation = ne e

KI{/Inactivate + [HZ 02]

For the parameter estimation, the initial concentration of DTMB was set to the concentration for
each sample at time 0, to allow for some initial formation of product prior to initiation of data
collection. The initial concentration of HRP and TMB were set to 1 nM and 1 mM respectively
and were allowed to vary during the course of the reaction. The values for Kcat and Kinactivate Were
limited to < 1000 sec™ and < 10° MXsec respectively. The values were minimized using a directed
evolution algorithm and > 200,000 functions were evaluated until the fit appeared to have ceased
minimizing.

Parameter Scans with Copasi

A parameter scan of Kn"™Va® was generated using Copasi software. The reaction and inhibition
of HRP was modeled using equations SC3 and SC4b. Ky'"MtVae was stepped from 10° to 10° pM
in a logarithmic fashion with 15 data points. The sum of the squares of the error was plotted for
each Km"™™Vat yalye following a directed evolution minimization of 100,000 functions for each
data point.
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Supplementary Figure 5. Modeling of inactivation rates of HRP. Raw data for the formation of
TMB radicals at varying concentrations of H20: in the absence of QD (A) and presence of 2
equivalents of 520 QD (B). Solid lines represent the best fit from data simulations (parameters are
in Table S1). H>O> concentrations that were used were 1mM (grey), 2mM (black), 4 mM (red), 6
mM (blue), 10 mM (pink), 20 mM (cyan), 36 mM (yellow), and 50 mM (green).
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Table S1. Reaction parameters for HRP derived from H>O- inhibition studies in Figure S4.
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Kinetic parameters derived from H20:2 inhibition studies

Keat (sec™) | Km (UM) Kinactivate (M sec™)
NoQD | 33.7+0.3 | 27} 0.70+0.01
520QD | 90.9+0.8 | 28! 0.85+0.02

Yvalues were fixed during the parameter optimization.
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Supplementary Figure 6. Plots of the sum of squares error vs. Ky™tvation yalyes for H,0:
inactivation. Plots were generated for HRP bound to 520 QD (black) and no QD (red). This
demonstrates that the inactivation can be modeled without a Michaelis complex as in Figure S4
and Table S1.
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Supplementary Figure 7. Effect of QD loading ratio on the activity of HRP when using glucose
and GOX as H20 generators. HRP (1 nM) was incubated with varying ratios of either 520 QD
(open circles) or 655 QD (filled circles). The activity was measured using 20 mM glucose
combined with 10 nM GOX as the hydrogen peroxide source. The observed rates were compared
to identical samples lacking QDs.
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Supplementary Figure 8. Rapid kinetics modeling of the oxidation of TMB over time. The red
dashed line highlights how peroxide inhibition will begin to be significant at longer time points
(>30 sec), which is consistent with the delay time between peroxide addition and the start of our
Kinetic assays.

o ().001 MM == 0.5 mM
e (0.011 mM 1.3 mM
0.028 mM 3.5 mM
0.072 MM === 9.4 mM
5€-7 7| emmmm 019 MM = 25 mM

Delay time = 30 sec

de-7 -

Je-7 -

2e-7 -

S[DTMB]/ 5t (M/sec)

1e-7 -

Time (Sec)

Modeling of the kinetics of HRP and GOX.

Kinetic Equations

Lettlng gred = [Gred]! gox = [Gox]! S = [S]! 0= [02]! p = [HZOZ]I h = [HRP], hl =
[HRP,], h, = [HRP;], m = [TMB], m* = [TMB*], and m,; = [TMB: TMB]*, and assuming
well-stirred conditions, then the kinetics of the ideal reactions (1a-c) and (3) will be governed by
the ordinary differential equations (ODE):

dGox ds dp
(Sla) dt = koGrea0 — KrGoxS dt = —krGoxs dt = koGreqa0 — kihp
dh dhy dm
(S].b) E == k3h2m - klhp E == klhp - kzhlm E == _kzhlm - kgmhz
dm* * *
(S1c) T ko,hym + ksh, — kym™m Mot = [TMBpor]l = m+m* +2my
(Sle) Jrot = [Grot] = Gox + Grea htor = [HRPiot] = h + hy + hy
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Taking o, Giorr Rior» Meor, and the various reaction rates as known, then the system in (S1)
represent 10 equations in 10 unknowns that, with proper initial conditions imposed (including that
p(t = 0) = pini), can be solved for all variables including the main observable m,;. Numerically,
the wide range of concentrations involved (e.g., h:,: ~ 1 NM while p can be as large as 20 mM)
implies a stiff system and an appropriate ODE solver should be used, especially as p gets larger.

Generalizing the ideal system by using (2a) and (2b) instead of (1b) requires introducing the
additional variables m; = [HRP;:TMB], and m, = [HRP;;: TMB]. Furthermore, if the side
reactions (4)-(6) are to be included, then other needed variables are h; = [HRP,;;], hy = [P670],
p; = [HRP:H,0,],  p, = [HRP;;:H,0;], mg =[QD:TMB], g5 = [Gsq)s  Grear =
[Grea: DTMB], gsqr = [Gsq: DTMB], and g = [@D], and the system of ODEs becomes:

dg dg
(S2a) d;)x = ko493 — KrGoxs + kplzgsqt d_:q = kplogredt - k—p9gredt
d.gred
(SZb) T = _kolgredo + k—olgl + krgoxs - kp9gredmd + k—p9gredt
ds dp

(S2c) FT —krgoxs a@ kosgs — kihp — kpohyp + k_pop1 — kpehab + k_pep2

dpl de
(52d) T kp2hyp — (k—pZ + kp3 + kpy + kpS)pl ar kpchap — (k—p6 + kp7)Pz

dYrea
(S3e) C;: L= kp9gredmd - (k—p9 + kplo)gredt
dh dhs

(821) - kspmy — kihp + ky3py + kpghs + kpiopC2 ar kyp702 — kpghs

dh,
(S29) o kihp — kyghym + k_yomy — kpahap + k_pop1 + kpoghi1 g1 — k_poaC1

dh,
(S2h) ar kopmy — ksghom + k_3amy + kpapr — kpehod + k_peP2 + kp1oah291

—k_p10aC2 + kpopC1
m
(521) E = _kZahlm + k_Zaml - k3ah2m + k_3am2 - kplqm + k_plma
. dm, m;
(52)) ar kpamhy — (k_3q + kop)my ar ksgmhy — (k_3q + k3p)m,
am® . dmg X

(S52k) T kopmy + k3pym, — kym™m ek ky,m'm
(52D Meoe =M +m" +mg +2mg + my + My + 2greqr + 29sqe
(52m) Gtot == Yox + Grea T Gsq t Great t+ Isqt Qtot = q t+ Mg
(SZn) htot=h+h1+h2+h3+h4+m1+m2+p1+p2
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The system now consists of 21 equations in 21 unknowns which can be solved if proper initial
conditions are given and all parameters are known. Although some of the rate constants are given
in the literature, we generally use our own values since the conditions in our experiments are
unavoidably different from published work; however, in no case are our values substantially
different from published ones.

Justification of Michaelis-Menten in the Ideal Case.

The ideal HRP system of equations in (S1) can be reduced to a formula for dm,/dt of the
Michaelis-Menten form if one assumes m = m,,;, that the k, reaction is fast, neglects the ks
reaction, and invokes “Briggs-Haldane”-like assumptions, namely that dh/dt = dh,/dt = 0.
The result is:
dmgy - keatheorP

dt — Ky+p

(S3a) 1%

2k2k3mtot :‘at k2k3mt0t
S3b h cat =—7—F—  Km= =
(S3b) where cat = ™ 2k, ky(ky +k3)

This is confirmed by simulation with the parameters given in Table 1 and the plot in Fig. 3C. That
the ideal equations fit the data well suggests that the side reactions are unimportant in this regime.

Hydrogen Peroxide Production by GOX.

To assess the potential for hydrogen peroxide inhibition occurring in the GOX-HRP experiments,
we simulate the H20- production for various levels of glucose and delay time, assuming [GOX] =
20 nM. For these calculations, we use the GOX kinetic parameters of Gibson et al.> The result is
plotted in Figure S9, and from this plot we see that under all circumstances considered in this
paper, the H2O- concentration always remains below 1 mM. Based on the experiments of Figure
6, we therefore expect H>O> inhibition to not be an important contributor to the GOX-HRP
experiments, and specifically the inhibition effect seen in Fig. 6D.
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Table S2. Reaction parameters for HRP side reactions.

HRP kinetic parameters for side reactions

Rate constant Literature3* This work
k,1 (Msec?) 5x10°
k_, (sec) 0.07
k,, (Msec?) 500 500
k_,, (sec?) Slow 0.46
ks (sec?) 1.76 1.76
k4 (seCl) 0.0079 0.0079
ks (sec?) 0.0039 0.0039
k,6 (Msec?) 25 25
k_,6 (sec™) Slow 0.04
k7 (sec?) 0 0
kg (sec?) 0.0022 0.0022
Gy |-
k_p(zs:clf)_pn >0
kvl("s ;_1’;1’12 1000
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Supplementary Figure 9. Simulated levels of hydrogen peroxide as produced by GOX with
glucose as a substrate following a delay time of either 30 or 100 seconds.
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Supplementary Figure 10. Bleaching of TMB charge transfer complex by GOX/glucose or H205.
Reactions were set up with 2 nM HRP, 500 uM H202, 1 mM TMB, and 20 mM glucose. Once the
absorbance at 650 nm had nearly maximized, either 20 mM H20- or 370 nM GOX was added. An
additional control was run that received no additional component.
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Supplementary Figure 11. Light exposure doesn’t affect HRP kinetics on QD. HRP was bound
to 2 equivalents of 520 QD at a final concentration of 1 nM. The reactions contained 1 mM TMB
and were initiated simultaneously by the addition of 1 mM H.O within a dark plate reader. The
reactions shown in black were monitored immediately while those in red and green were kept in
the dark for 141 sec and 281 sec respectively prior to initiating light exposure and reaction
monitoring.
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