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Fig. S1 (a) The (001) bilayer cleaved layer from Be2C bulk crystal. (b) Top and (c) 

side views of the optimized structure of Be2C monolayer. (d) Initial buckled 

configuration of Be2C monolayer with the buckling high of 0.5 Å. (e) Top and (f) side 

views of optimized Be2C monolayer starting from the buckled configuration. The 

results indicate the Be2C monolayer tends to be the planar configuration. 
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Fig. S2 The (001) four layers cleaved layer from Be2C bulk crystal. (b) Top and (c) 

side views of the optimized structure of Be2C bilayer. The structure relationship 

between monolayer and bulk crystal indicates the possibility of growing Be2C 

monolayer on substrates using bottom-up techniques. 

 

  



 

 

 

Fig. S3 The electronic band structures of (a) Be2C and (b) BeH2 monolayers obtained 

from first-principles calculations involving SO coupling. The electronic band 

structures of (c) Be2C and (d) BeH2 monolayers with the strength of SO coupling 

interaction being artificially improved up to ten times order of the magnitude of 

original one. The energy at the Fermi level was set to zero. These results indicate that 

both of the DNL states of Be2C and BeH2 cannot be gapped and thus are robustness 

against SO coupling. 

  



 

 

 

 

Fig. S4 The electronic band structures of the buckled B2C monolayer obtained from 

the first-principles calculations involving SO coupling. The energy at the Fermi level 

was set to zero. The result indicates the DNL states are robust against the out-of-plane 

buckling perturbation induced by the substrate effect. 

 

  



 

Spin-orbit coupling effects 

 

In order to verify the robustness of DNL against SO interaction, we introduced an 

intrinsic SO coupling term into the Hamiltonian of the pz-pxy model. Each site of the 

Lieb lattice has only one atomic orbital. In this case, there is no on-site spin-orbit 

coupling term, and the mixing between pxy and pz is prohibited. Therefore, we only 

considered the nest-nearest-neighbor (NNN) spin-orbit coupling term. 

H𝑆𝑂 = 𝑖𝜆∑ (𝑑𝑖𝑗
1 × 𝑑𝑖𝑗

2 ) ∙ 𝜎𝛼𝛽𝑐𝑖𝛼
+ 𝑐𝑗𝛽≪𝑖,𝑗≫𝛼,𝛽 , 

where λ represents the amplitude for the nest-nearest-neighbor (NNN) 

spin-orbit-induced interaction. 𝑑𝑖𝑗
1  and 𝑑𝑖𝑗

2  are the two unit vectors along the 

nearest-neighbor Be-Be bonds connecting site i to its next-nearest neighbor j and the 

term v𝑖𝑗 = (𝑑𝑖𝑗
1 × 𝑑𝑖𝑗

2 ) = ±1. σ⃗⃗⃗ is the vector of Pauli pain matrices.  

 

In momentum space, the spin-orbit term of Hamiltonian is written as follows. 

For the pz+px,y model: 

 

 H𝑘
𝑆𝑂   =

(

 
 

−2𝑡(𝑐𝑜𝑠(𝑘𝑥𝑎) + 𝑐𝑜𝑠(𝑘𝑦𝑎)) 0 0

∆ − 𝑖𝜆 −4𝑡′ (𝑠𝑖𝑛 (
𝑘𝑥𝑎

2
) × 𝑠𝑖𝑛 (

𝑘𝑦𝑎

2
))

∆ + 𝑖𝜆 )

 
 

 

 

The energy bands become: 

𝐸0 = −2𝑡(𝑐𝑜𝑠(𝑘𝑥𝑎) + 𝑐𝑜𝑠(𝑘𝑦𝑎)) 

𝐸(±) = ∆± (𝜆2 + 16𝑡′
2
𝑠𝑖𝑛2 (

𝑘𝑥𝑎

2
) × 𝑠𝑖𝑛 2(

𝑘𝑦𝑎

2
))
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For the pz+s model: 

 

 

H𝐤 = (

−2𝑡(𝑐𝑜𝑠(𝑘𝑥𝑎) + 𝑐𝑜𝑠(𝑘𝑦𝑎)) 0 0

∆ − 𝑖𝜆 −4𝑡′ (𝑐𝑜𝑠 (
𝑘𝑥𝑎

2
) × 𝑐𝑜𝑠 (

𝑘𝑦𝑎

2
))

∆ + 𝑖𝜆

). 



 

The energy bands are: 

𝐸0 = −2𝑡(𝑐𝑜𝑠(𝑘𝑥𝑎) + 𝑐𝑜𝑠(𝑘𝑦𝑎)) 

𝐸(±) = ∆ ± (𝜆2 + 16𝑡′
2
𝑐𝑜𝑠2 (

𝑘𝑥𝑎

2
) × 𝑐𝑜𝑠 2(

𝑘𝑦𝑎

2
))

1/2

 

The DNL arising from the crossing of the two bands cannot be gapped. We also 

calculated the Z2 topological invariant based on this Hamiltonian using Fu’s strategy 

and found that it equals to the value without considering SO coupling. This result is 

reasonable since the band inversion is not related to SO coupling unlike the cases of 

most TIs 


