A new Dirac Cone material: A graphene-like Be₃C₂ Monolayer

Bing Wang, Shijun Yuan, Yunhai Li, Li shi and Jinlan Wang*

School of Physics, Southeast University, Nanjing 211189, P. R. China

Corresponding Author

*To whom correspondence should be addressed: J. W. (E-mail: jlwang@seu.edu.cn)

Figure S1. Optimized structures of Be_3C_2 -I (2×2 supercell) (a) and Be_3C_2 -II (2×1 supercell) (b) monolayer. Phonon dispersion spectrum of the Be_3C_2 -I (c) and Be_3C_2 -II (d) monolayer.

Figure S2. Band structure of Be_3C_2 monolayer calculated by PBE functional without and with SOC effect and by HSE06 method.

Figure S3. Orbitally resolved band structures of Be₃C₂ monolayer calculated by PBE method.

Figure S4. Orbital-resolved band structures of Be_3C_2 monolayer under mild tensile or compressional strains (-3%~3%), under which the evident maintenance of Dirac cone persist. The green, red, magenta and blue dots represent the contributions from the *s*, *p_x*, *p_y* and *p_z* atomic orbitals, respectively.

Tight-binding model.

In our tight-binding (TB) model we consider only the p_z orbitals of Be and C atoms, and include hopping terms up to 5-th nearest neighbor in the summation of equation:

$$H_{ij}(k) = \sum_{k} e^{i k \cdot R} \left\langle \stackrel{r}{0}, i \right| \hat{H} \left| \stackrel{r}{R}, j \right\rangle$$

As a result, the Hamiltonian is a 5×5 matrix. Below we list the up-triangle part of the matrix while the other elements can be determined as the complex conjugate of their counterparts.

$$\begin{split} H_{11} &= \varepsilon_1 \\ H_{12} &= t_2 + t_2 e^{-2\pi i k_a} + t_5 e^{-2\pi i k_b} + t_5 e^{-2\pi i (k_a + k_b)} \\ H_{13} &= t_2 e^{-2\pi i k_b} + t_2 e^{-2\pi i k_a} + t_5 e^{-2\pi i (k_a + k_b)} + t_5 \\ H_{14} &= t_1 + t_4 e^{-2\pi i (-k_a - k_b)} + t_4 e^{-2\pi i k_a} \\ H_{15} &= t_1 e^{-2\pi i k_a} + t_4 e^{2\pi i k_b} + t_4 \\ H_{22} &= \varepsilon_1 \\ H_{23} &= t_2 e^{2\pi i k_b} + t_2 + t_5 e^{2\pi i (k_a + k_b)} + t_5 e^{-2\pi i k_a} \\ H_{24} &= t_1 + t_4 e^{2\pi i k_a} + t_4 e^{-2\pi i k_b} \\ H_{25} &= t_1 + t_4 e^{2\pi i k_b} + t_4 e^{-2\pi i k_a} \\ H_{33} &= \varepsilon_1 \\ H_{34} &= t_1 e^{-2\pi i k_b} + t_4 e^{2\pi i k_a} + t_4 \\ H_{35} &= t_1 + t_4 e^{-2\pi i (k_a + k_b)} + t_4 e^{-2\pi i k_b} \\ H_{44} &= \varepsilon_2 \\ H_{45} &= t_3 e^{2\pi i k_b} + t_3 + t_3 e^{-2\pi i k_a} \\ H_{55} &= \varepsilon_2 \end{split}$$

Here ε_1 and ε_2 are on site energies for Be and C atoms, respectively. k_a and k_b are components of the fractional coordinate of the wave vector \mathbf{k} , and $t_1 \sim t_5$ are

hopping integrals as demonstrated in Figure S5. Note that we have already used the symmetry of the crystal and Slater-Koster relation to reduce the number of hopping integrals, so only 5 integrals are essential. We find it mandatory to include hopping terms beyond the first nearest neighbor to accurately describe the band structure near the Dirac cone. The on-site energies and hopping integrals are obtained using the Wannier90 software package, which are summarized in Table 1.

Table 1. On-site energies and hopping integrals up to 5-th nearest neighbor for Be_3C_2 . All quantities are in eV.

Figure S5. Demonstration of hopping integrals t_1 - t_5 in a 3×3 super cell of Be₃C₂. Green and dark brown spheres denote Be and C atoms, respectively.