Supporting information

Jian Zhi^{a,b*}, Oliver Reiser^a, Youfu Wang^b, Aiguo Hu^b.

^aInstitute of Organic Chemistry, University of Regensburg, Universitätsstr.31,93053

Regensburg, Germany

^bShanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science

and Engineering, East China University of Science and Technology, Shanghai 200237,

China

Email: jian.zhi@outlook.com

Capacitance calculation

If the capacitances of the two electrodes, i.e. positive and negative, can be expressed as C_p and C_n , respectively, the overall capacitance (C_T) of the entire cell can be expressed as eqn (1):

$$\frac{1}{C_T} = \frac{1}{C_p} + \frac{1}{C_n}$$
(1)

In a symmetrical supercapacitor, $C_p=C_n=C_0$, where C_0 represents the per-electrode capacitance and in this study represents the capacitance of one electrode. So the relationship between C_T and C_0 should be as eqn (2):

$$C_0 = 2C_T = \frac{2It}{V} \tag{2}$$

where I, t and V are charged current, t is the discharge time, V is the voltage drop upon discharging (excluding IR drop).

As a result, the per-electrode areal capacitance (C_{A0}) and volumetric capacitance (C_{v0}) of the device is shown in eqn (3) and eqn (4):

$$C_{A0} = \frac{C_0}{A_0} = \frac{2It}{A_0} = \frac{4It}{A_T V} = 4C_{A-cell}$$
(3)
$$C_{v0} = \frac{C_0}{v_0} = \frac{2I(t - t_{OMC})}{v_0 V} = \frac{4I(t - t_{OMC})}{v_T V} = 4C_{v-cell}$$
(4)

Where A_0 is the surface area of in one electrode, which is approximately considered to be a cylinder. A_T represents the total mass the whole cell, in which $A_T=2A_0$. C_{A-cell} is the areal capacity of the whole cell. V_0 is the volume of one electrode the total volume of the device $v_t=2v_0$. C_{v-cell} is the volumetric capacitance of the whole device.

The corresponding volumetric energy and power density are calculated through eqn (5) and

(6):

$$E_{v} = \frac{1}{2}C_{v-cell}V^{2} = \frac{1}{8}C_{v0}V^{2}$$
(5)
$$P_{v} = \frac{E_{v}}{t}$$
(6)

Figure S1. Digital image of a vial containing CVD gr/OMC dispersions stabilized by P123 surfactants.

Figure S2. Pore size distribution of CVD gr/OMC below 2 nm calculated from the NLDFT model

Figure S3. XRD pattern of CVD gr after Ni etching.

Figure S4. Absorbance at 660 nm measured for CVD gr/OMC dispersions as a function of sonication time.

Figure S5. The relationship between line resistance and mass loading of CVD gr/OMC.

Figure S6. Ultimate tensile strength of various carbon coated cotton threads.

Figure S7. XRD patterns of MnO₂ spheres.

Figure S8. Bulk heterojunction (BJH) pore distribution spectra of the CT-CVD gr/OMC-MnO₂ composite electrode.

Figure S9. The relationship between surface area (a)/pore volume (b) and mass loading of MnO₂ nanoparticles on CT-CVD gr/OMC electrode.

Figure S10. Coulombic efficiency of CT-CVD gr/OMC-MnO₂ supercapacitor as a function of cycling number at a current density of 13.76 mA cm⁻².

Figure S11. (a) Specific capacitance as a function of scan rate (inverse square root) for CT-CVD gr/OMC-MnO₂ electrode. (b) specific (inverse) capacitance as a function of scan rate (square root) for CT-CVD gr/OMC-MnO₂ electrode.

Figure S12. Bar graph of mass normalized capacitance of MnO2 in various thread-like supercapacitors with Faradaic insertion capacity (red) and Faradaic pseudocapacitive charging (blue) derived from Trasatti's method.

Figure S13. EIS spectra of CT-CVD gr/OMC supercapacitor before and after 3000 cycles.

Figure S14 (a,b). EIS data of CT-CVD gr/OMC and CT-CVD gr/OMC- MnO₂ composites and the equivalent circuit diagram used for the fitting.

Figure S15. SEM image of TiO₂ nanowires

Figure S16. (a) Highlights of the response speed under 350 nm illumination. (b)

Highlights of the recovery speed under 350 nm illumination.

Sample	BET-surface area (m ² g ⁻¹)	Mesopore volume (cm ³ g ⁻¹)	Micropore volume (cm ³ g ⁻¹)	Micro/meso- porosity
CVD-gr	91	0.09	0	-
OMC	236	0.5	0.9	1.8
CVD-gr/OMC	328	0.4	1.1	2.8

Table S1. Structural characterization data for CVD gr, OMC and CVD gr/OMC

 Table S2. Comparison of electrochemical performance of yarn/fiber-based supercapacitors.

-					
Re	f. Materials	Electrolyte	Voltage	Pv	Ev
			window	mW cm ⁻³	mWh cm ⁻³
73	B PPy/ MnO ₂ /rGO	PVA/ H ₃ PO ₄	0-0.8	16	1.1
16	5 ZnO/ MnO ₂	PVA/LiCl	0-0.8	2.4	0.04
74	TiO_2/MnO_2	PVA/LiCl	0-0.8	230	0.3
63	MnO ₂ /Carbon fiber	PVA/H ₃ PO ₄	0-0.8	400	0.22
75	5 PPy	PVA/ H ₃ PO ₄	0-0.8	270	1
1.	5 PEDOT/CNT	PVA/ H ₃ PO ₄	0-0.8	38000	1.1
76	WO _{3-x} /MoO _{3-x}	PVA/ H ₃ PO ₄	0-1.9	730	1.9
71	V Nickel fiber/Co ₃ O ₄ nanowire	PVA/KOH	0-1.5	1470	0.62
78	NiCo ₂ O ₄	PVA/KOH	0-1	17000	1.44
64	MnO ₂ /graphene/carbon fiber	PAAK/KCl	0-1.6	200	0.9
14	CuO/AuPd/ MnO ₂	PVA/KOH	0-0.8	413	0.55
Th	is CVD gr/OMC- MnO_2	PVA-BMIMCl-	0-1.5	300	2.7
w0		L12504			1