Supporting Information

Planar B₃₈⁻ and B₃₇⁻ Clusters with A Double-Hexagonal Vacancy: Molecular Motifs for Borophenes

Qiang Chen,^{a,c,d} Wen-Juan Tian,^b Lin-Yan Feng,^a Hai-Gang Lu,^a Yue-Wen Mu,^a Hua-Jin Zhai,^{*a} Si-Dian Li^{*a} and Lai-Sheng Wang^{*b}

^aNanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.

^bDepartment of Chemistry, Brown University, Providence, Rhode Island 02912, USA.

^cBeijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural

Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of

Sciences, Beijing 100190, China

^dInstitute of Materials Science, Xinzhou Teachers' University, Xinzhou 034000, China

*E-mail: hj.zhai@sxu.edu.cn; lisidian@sxu.edu.cn; lai-sheng_wang@brown.edu

Feature	VDE _{exptl} ^a	Final states and their electronic configurations	VDE_{theo}
		C ₅ B ₃₈ ⁻ (² A")	
х	4.02(4) ^b	³ A" {21a" ² 22a" ² 28a ² 29a ² 23a" ² 24a" ² 30a ² 31a ² 25a" ² 26a" ¹ 32a ¹ }	4.125 ^c
		¹ A" {21a" ² 22a" ² 28a' ² 29a' ² 23a" ² 24a" ² 30a' ² 31a' ² 25a" ² 26a" ¹ 32a' ¹ }	4.126
А	~4.3	³ A' {21a'' ² 22a'' ² 28a' ² 29a' ² 23a'' ² 24a'' ² 30a' ² 31a' ¹ 25a'' ² 26a'' ¹ 32a' ² }	4.27
		¹ A" {21a" ² 22a" ² 28a' ² 29a' ² 23a" ² 24a" ² 30a' ² 31a' ² 25a" ² 26a" ⁰ 32a' ² }	4.34
В	4.62(3)	³ A" {21a" ² 22a" ² 28a ² 29a ² 23a" ² 24a" ² 30a ² 31a ¹ 25a" ¹ 26a" ¹ 32a ² }	4.60
		¹ A" {21a" ² 22a" ² 28a ² 29a ² 23a" ² 24a" ² 30a ² 31a ² 25a" ¹ 26a" ¹ 32a ² }	4.66
		¹ A' {21a" ² 22a" ² 28a' ² 29a' ² 23a" ² 24a" ² 30a' ² 31a' ¹ 25a" ² 26a" ¹ 32a' ² }	4.84
С	5.04(3)	¹ A' {21a" ² 22a" ² 28a' ² 29a' ² 23a" ² 24a" ² 30a' ¹ 31a' ² 25a" ² 26a" ¹ 32a' ² }	5.02
		³ A' {21a'' ² 22a'' ² 28a' ² 29a' ² 23a'' ² 24a'' ² 30a' ¹ 31a' ² 25a'' ² 26a'' ¹ 32a' ² }	5.03
D	5.39(5)	³ A" {21a" ² 22a" ² 28a' ² 29a' ² 23a" ² 24a" ¹ 30a' ² 31a' ² 25a" ² 26a" ¹ 32a' ² }	5.35
		¹ A" {21a" ² 22a" ² 28a ² 29a ² 23a" ² 24a" ¹ 30a ² 31a ² 25a" ² 26a" ¹ 32a ² }	5.36
		³ A" {21a" ² 22a" ² 28a' ² 29a' ² 23a" ¹ 24a" ² 30a' ² 31a' ² 25a" ² 26a" ¹ 32a' ² }	5.39
E	5.74(2)	¹ A" {21a" ² 22a" ² 28a ² 29a ² 23a" ¹ 24a" ² 30a ² 31a ² 25a" ² 26a" ¹ 32a ² }	5.76
		³ A' {21a" ² 22a" ² 28a ² 29a ¹ 23a" ² 24a" ² 30a ² 31a ² 25a" ² 26a" ¹ 32a ² }	5.84
		¹ A' {21a'' ² 22a'' ² 28a' ² 29a' ¹ 23a'' ² 24a'' ² 30a' ² 31a' ² 25a'' ² 26a'' ¹ 32a' ² }	5.93
F	5.9-6.3	¹ A' {21a" ² 22a" ² 28a ¹ 29a ² 23a" ² 24a" ² 30a ² 31a ² 25a" ² 26a" ¹ 32a ² }	6.32
		3 A' {21a" ² 22a" ² 28a' ¹ 29a' ² 23a" ² 24a" ² 30a' ² 31a' ² 25a" ² 26a" ¹ 32a' ² }	6.32
		¹ A" {21a" ² 22a" ¹ 28a ² 29a ² 23a" ² 24a" ² 30a ² 31a ² 25a" ² 26a" ¹ 32a ² }	6.34
		${}^{1}A" \{21a" {}^{1}22a" {}^{2}28a' {}^{2}29a' {}^{2}23a" {}^{2}24a" {}^{2}30a' {}^{2}31a' {}^{2}25a" {}^{2}26a" {}^{1}32a' {}^{2}\}$	6.36
		$C_1 B_{37}^{-}$ (¹ A)	
х	3.88(4) ^b	² A {46a ² 47a ² 48a ² 49a ² 50a ² 51a ² 52a ² 53a ² 54a ² 55a ² 56a ¹ }	3.75 [°]
А	4.30(5)	² A {46a ² 47a ² 48a ² 49a ² 50a ² 51a ² 52a ² 53a ² 54a ² 55a ¹ 56a ² }	4.28
В	~4.7	² A {46a ² 47a ² 48a ² 49a ² 50a ² 51a ² 52a ² 53a ² 54a ¹ 55a ² 56a ² }	4.74
С	4.87(5)	² A {46a ² 47a ² 48a ² 49a ² 50a ² 51a ² 52a ² 53a ¹ 54a ² 55a ² 56a ² }	4.89
D	5.17(3)	² A {46a ² 47a ² 48a ² 49a ² 50a ² 51a ² 52a ¹ 53a ² 54a ² 55a ² 56a ² }	5.14
E	5.41(3)	² A {46a ² 47a ² 48a ² 49a ² 50a ² 51a ¹ 52a ² 53a ² 54a ² 55a ² 56a ² }	5.49
F	5.67(5)	² A {46a ² 47a ² 48a ² 49a ² 50a ¹ 51a ² 52a ² 53a ² 54a ² 55a ² 56a ² }	5.75
G	6.10(5)	² A {46a ² 47a ² 48a ² 49a ¹ 50a ² 51a ² 52a ² 53a ² 54a ² 55a ² 56a ² }	6.03
Н	6.22(2)	² A {46a ² 47a ² 48a ¹ 49a ² 50a ² 51a ² 52a ² 53a ² 54a ² 55a ² 56a ² }	6.24
		² A {46a ² 47a ¹ 48a ² 49a ² 50a ² 51a ² 52a ² 53a ² 54a ² 55a ² 56a ² }	6.31

Table S1.Experimental vertical detachment energies (VDEs) measured from photoelectron spectra of B_{38}^- and B_{37}^- compared with calculated VDEs at the TD-PBE0/6-311+G* level. All energies are in eV.

^{*a*} Numbers in parentheses represent the experimental uncertainty in the last digit.

 $^{\textit{b}}$ Experimental ADEs of $B_{38}^{-}\,$ and $B_{37}^{-}\,$ are estimated to be 3.91 \pm 0.05 and 3.76 \pm 0.05 eV, respectively.

^c Theoretical ADEs at the PBE0/6-311+G* level are 4.06 and 3.67 eV for $C_s B_{38}^-$ (1, ²A") and $C_1 B_{37}^-$ (2, ¹A), respectively.

Figure S1. Selected low-lying isomers of B_{38}^- at the PBE0/6-311+G* level. Relative energies are indicated in eV, with corrections for zero-point energies at the same level. The point group symmetry and spectroscopic state of each isomer are also given.

Figure S2. Selected low-lying isomers of B_{37}^- at the PBE0/6-311+G* level. Relative energies are indicated in eV, with corrections for zero-point energies at the same level. The point group symmetry and spectroscopic state of each isomer are also given.

Figure S3. Spin-polarized orbital energy order of the global minimum of B_{38}^{-} (1, C_s , ²A") at the PBE0/6-311+G* level. The α/β pair of orbitals are connected by a blue line, and the unpaired orbital, α -26a", is shaded in pink. The neutral final states, $C_s B_{38}$ (³A") and $C_s B_{38}$ (¹A") are indicated in red, upon removing an electron from the anion $C_s B_{38}^{-}$ (²A") ground state.

Comparison of the π -CMOs of (a) $C_s B_{38}$, (b) $C_1 B_{37}$, and (c) $D_{6h} C_{24}H_{12}$. Figure S4.

(b)

HOMO-10 (a)

HOMO-14 (a) HOMO-15 (a)

HOMO-25 (a) HOMO-26 (a)

HOMO-11' (e_{1g}) HOMO-11 (e_{1g})

Table S2. Optimized coordinates of $C_s B_{38}^{-}(\mathbf{1}, {}^{2}A'')$ and $C_1 B_{37}^{-}(\mathbf{2}, {}^{1}A)$ at the PBE0/6-311+G* level.

(1) $C_s B_{38}^{-}(^2A'')$					
В	-0.39689900	2.50776300	1.69526400		
В	0.09795500	2.47284600	3.29977500		
В	0.24919900	1.07693600	4.16092200		
В	-0.23575300	-0.37532000	3.30256700		
В	-0.78772000	1.04947600	0.81489300		
В	-0.67919100	-1.85194400	0.82332800		
В	0.34081500	-1.77174900	4.09025800		
В	-0.08384800	3.90786500	0.82802600		
В	-0.32203500	-1.79946300	2.45961200		
В	0.29240100	3.87994500	2.49676500		
В	0.49852100	-0.34663300	4.77687100		
В	0.39072500	-3.21808600	3.27293700		
В	-0.14062100	-3.25093900	1.65412700		
В	0.44120900	-4.65659800	0.82274400		
В	-0.67919100	-1.85194400	-0.82332800		
В	-0.32203500	-1.79946300	-2.45961200		
В	-0.14062100	-3.25093900	-1.65412700		
В	0.44120900	-4.65659800	-0.82274400		
В	0.65485700	-4. 49326000	-2.38133300		
В	0.39072500	-3.21808600	-3.27293700		
В	0.34081500	-1.77174900	-4.09025800		
В	-0.23575300	-0.37532000	-3.30256700		
В	0.49852100	-0.34663300	-4.77687100		
В	0.09795500	2.47284600	-3.29977500		
В	0.24919900	1.07693600	-4. 16092200		
В	-0.39689900	2.50776300	-1.69526400		
В	0.29240100	3.87994500	-2.49676500		
В	-0.08384800	3.90786500	-0.82802600		
В	-0. 42048600	1.09536600	-2.44670000		
В	-0. 42048600	1.09536600	2.44670000		
В	-0.25184600	-3.26429100	0.00000000		
В	-0.78772000	1.04947600	-0.81489300		
В	0.65485700	-4. 49326000	2.38133300		
В	0.66669400	5.15956400	1.61027300		
В	0.56771900	5.24696000	0.00000000		
В	0.66669400	5.15956400	-1.61027300		
В	-0.72376200	-0.37710400	1.64538100		
В	-0.72376200	-0.37710400	-1.64538100		

(2) $C_1 B_{37}^{-1}(^1A)$						
В	-0.31792600	-3.27773800	0.15001600			
В	1.12247200	-3.92873300	-0.62320800			
В	2.55323200	-3.17936300	-0.34061000			
В	2.58963000	-1.85983900	0.73435000			
В	1.15072000	-0.91449700	1.06656100			
В	-0.29941400	-1.70375000	0.89068700			
В	1.27580300	0.71589300	0.89932800			
В	3.94571500	-0.98080600	0.76572300			
В	-1.72040100	-3.90870100	-0.59382600			
В	4.17470800	0.53891100	0.29124700			
В	-0.30734200	-4. 51172500	-0.94417100			
В	-1.72935300	-2.39904000	0.29373700			
В	3.86079400	-2.23284600	-0.27713300			
В	4.79232100	0.72193200	-1.24703600			
В	2.78144000	1.50116800	0.45504200			
В	2.77826300	2.98138600	-0.32407800			
В	-0.11247800	1.61036500	0.76137900			
В	-1.62722900	0.85851400	0.72527500			
В	-1.49213300	2.47770400	0.31574500			
В	-0.02263300	3.23770200	0.17929600			
В	1.44595900	3.92729800	-0. 47992600			
В	0.06412800	4.63849800	-0.68496500			
В	-1.38908200	4.06899000	-0. 41726400			
В	-2.88316300	3.34873600	-0.36289800			
В	-2.99493800	1.75421300	0.21173500			
В	-4.22403900	2.53887500	-0.54241200			
В	-4.55013400	-0.63555700	-0.29787400			
В	-4.47040400	0.99938600	-0.27739700			
В	-3.14415300	-1.53039200	0.16847000			
В	-4.44023900	-2.18203700	-0.60119500			
В	-3.17302200	-3.10718500	-0.44843400			
В	-3.13511300	0.11205900	0.45132500			
В	1.14297900	-2.44494900	0.34025800			
В	1.41085700	2.33324000	0.44495100			
В	-1.71314800	-0.78124000	0.72093200			
В	4.00994400	1.97260300	-0.69250700			
В	4.64738000	-0.75907200	-0.71112200			