## **Supporting Information for**

## Two-Dimensional Germanium Monochalcogenide Photocatalyst for Water Splitting under Ultraviolet, Visible to Near-infrared Light

Yujin Ji, Mingye Yang, Huilong Dong, Tingjun Hou, Lu Wang<sup>\*</sup> and Youyong Li<sup>\*</sup>

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China



**Figure S1.** The phonon spectrum of monolayer (a) GeS and (c) GeSe and the vibration of total energies of (b) GeS and (d) GeSe at 300K during 5 ps by first-principles molecular dynamics calculations. (e) is the MD calculations for GeS monolayer in water environment at 300K.



**Figure S2.** The electrostatic potential differences (a, c, e and g) and the energy alignments (b, d, f and g) of bilayer GeS with (a, b) AB stacking, (c, d) AC stacking, bilayer GeSe with (e, f) AB stacking and (g, h) AC stacking.



**Figure S3.** The surface potential differences and alignments of energy levels for (a, b) trilayer GeSe and (c, d) four-layer GeSe.



Figure S4. The electron localization function (ELF) for bi-layer, tri-layer and four-layer GeS.

**Table S1**. Electrostatic potential difference (eV) between Sn surface and S (Se) surface for SnS and SnSe from monolayer to trilayer.  $\Delta E_1$  is the energy difference between VBM and water oxidation potential, and  $\Delta E_2$  is the energy difference between CBM level and water reduction potential.

|      | Layer number | Electrostatic<br>potential<br>difference<br>(eV) | $\Delta E_1 (eV)$ | $\Delta E_2 (eV)$ | Band gap<br>(eV) |
|------|--------------|--------------------------------------------------|-------------------|-------------------|------------------|
| SnS  | monolayer    | 1.19                                             | 1.47              | 1.51              | 3.02             |
|      | bilayer      | 2.34                                             | 1.19              | 1.44              | 1.52             |
|      | trilayer     | 3.57                                             | 1.14              | 1.47              | 0.27             |
| SnSe | monolayer    | 0.95                                             | 0.98              | 1.62              | 2.88             |
|      | bilayer      | 1.93                                             | 0.60              | 1.53              | 1.43             |
|      | trilayer     | 2.50                                             | 0.40              | 1.21              | 0.34             |