Supporting Information

Mapping of Bernal and non-Bernal

Stacking Domains in Bilayer Graphene

Using Infrared Nanoscopy

Gyouil Jeong ${ }^{a}$, Boogeon Choi ${ }^{a}$, Deok-Soo Kim ${ }^{a}$, Seongjin Ahn ${ }^{b}$, Baekwon Park ${ }^{a}$, Jin Hyoun
Kang ${ }^{a}$, Hongki Min ${ }^{b}$, Byung Hee Hong ${ }^{a}$, and Zee Hwan Kim* ${ }^{a}$
${ }^{\text {a }}$ Department of Chemistry, Seoul National University, Seoul 08826, Korea
${ }^{\mathrm{b}}$ Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea

A. Examples of IR-sSNOM images of bilayer graphene (BLG)

Figure S1. Examples of sSNOM intensity $\left(\left|s_{2}\right|^{2}\right)$ and phase (ϕ_{2}) images of BLG obtained with IR light at $\omega_{1}=0.366 \mathrm{eV}$ and $\omega_{2}=0.124 \mathrm{eV}$. The scale bars correspond to $2 \mu \mathrm{~m}$. Last column shows the stacking angles (θ) of AA'-BLG in each image, estimated from the Raman spectra (see Supporting Information-B).
B. Raman spectroscopy on AB and AA'-stacked bilayer graphene

Figure S2. (a) The Raman spectra of a BLG on $\mathrm{SiO}_{2} / \mathrm{Si}$ substrate (excitation wavelength of $\lambda_{\mathrm{ex}}=$ 514.5 nm) obtained from the D1 (β) and $\mathrm{D} 2(\alpha)$ regions of BLG shown in Figure 2c of main text). (b) Lineshape analysis of 2D peak of β (D1), showing characteristic lineshape for AB-BLG.

We have correlated the sSNOM contrasts to the Raman spectroscopic analysis results. Spectra (around G and 2D peaks) of BLG obtained from the b (D1 region) and a (D2 region) in Figure 2c.

The peak intensity ratios of G and 2D peaks of BLG $\left(I_{G} / I_{2 D}\right)$, and the lineshapes of 2Dpeaks are used to assess the stacking orders in BLG. We estimated the stacking angle and stacking order in BLG from the peak height ratio $\left(I_{\mathrm{G}} / I_{2 \mathrm{D}}\right)$, based on Chen et al's report, in which they correlated the stacking angle and the $I_{\mathrm{G}} / I_{2 \mathrm{D}}$. In particular, the AB-BLG has the fixed ratio of $I_{\mathrm{G}} / I_{2 \mathrm{D}} \approx 1^{1-3}$. For AB-BLG, the 2D peaks show characteristic shoulders in 2D peaks, which can be decomposed into four peaks, representing four-step Stokes-Stokes double-resonance Raman (DRR) scattering ${ }^{4}$.

Detailed 2D-lineshapes of AB-BLG show significant differences among reported results ${ }^{1,}$ ${ }^{3,5,6}$ possibly due to the differences in the doping levels of BLG. The most evident feature that distinguishes AB and AA^{\prime} '-BLG is simply the width of 2D peak. For a AA^{\prime} '-BLG with stackingangle $\theta=0 \sim 10^{\circ}$, additional peak at $1625 \mathrm{~cm}^{-1}$ (called R'-peak) appears, which provides additional information on stacking angle. For the particular BLG shown in Figure 2 in main text, the $I_{\mathrm{G}} / I_{2 \mathrm{D}}$, 2D-peak lineshape, and presence / absence of R'-peak (see Figure S2) indicates the existence of AB-BLG and AA'-BLG with $\theta=8 \pm 1^{\circ}$. In the last column of Figure S 1 , we have provided stacking angles of several other AA'-BLG domains we have examined with sSNOM.

C. Point-dipole modeling for IR s-SNOM

The details of point-dipole sSNOM model can be found in the reports by Aizpurua et al^{7} and Kim et al ${ }^{8}$. Briefly, the tip-end, which is modeled as a nanosphere has a polarizability of:

$$
\begin{equation*}
\alpha=4 \pi a^{3}\left(\varepsilon_{t i p}-\varepsilon_{1}\right) /\left(\varepsilon_{t i p}+2 \varepsilon_{1}\right), \tag{1}
\end{equation*}
$$

where the $\varepsilon_{t i p}$, and ε_{1} are dielectric constants of tip-end, and vacuum, respectively. For the calculation of sSNOM amplitude, we evaluate the Fresnel coefficient of graphene $/ \mathrm{SiO}_{2} / \mathrm{Si}$ sample:

$$
\begin{equation*}
r_{p}=\frac{Z_{1} C-Z_{2} S-\sigma_{r} \pi \alpha C}{Z_{1} C+Z_{2} S+\sigma_{r} \pi \alpha C}, \tag{2}
\end{equation*}
$$

where $C=\cos \varphi-i \frac{Z_{2}}{Z_{1}} \sin \varphi, S=-i \sin \varphi+\frac{Z_{2}}{Z_{1}} \cos \varphi$ and $\varphi=k_{2 z} d$. The $Z_{i}=\frac{2 \pi}{\lambda} \cdot \frac{\varepsilon_{i}}{k_{i z}}$ are the admittance of $i=1$ (vacuum), $2\left(\mathrm{SiO}_{2}\right)$, and $3(\mathrm{Si})$ media, and the $k_{i z}$ are the out-of-plane wave-
vectors in i^{\prime} 'h media: $k_{i z}(q)=\sqrt{\varepsilon_{i}(\omega / c)^{2}-q^{2}}\left(\operatorname{Im}\left[k_{i z}\right]>0\right.$ and $\left.\operatorname{Re}\left[k_{i z}\right]>0\right)$ where q and ω are the in-plane photon momentum vector and angular frequency of light, respectively. The σ_{r} is the inplane optical conductivity of graphene, σ, normalized by unit conductivity, $\sigma_{0}=c \alpha / 4$. The α is the fine-structure constant. Overall far-field scattering amplitude is calculated as:

$$
\begin{equation*}
\vec{E}_{\text {scat }} \propto \vec{\alpha} \cdot \vec{E}_{\text {inc }}\left(1-\ddot{\alpha} \cdot \vec{G}\left(\left\{\sigma, \varepsilon_{i}\right\}\right)\right)^{-1}, \tag{3}
\end{equation*}
$$

where $\vec{E}_{\text {inc }}$ is the incident electric field. The \vec{G} is the Green dyadic operator, which is a function of optical conductivities of graphene (σ), and dielectric constants of substrate materials $\left(\varepsilon_{i}\right)$. In the s-SNOM measurement, the signal is processed through a lock-in amplifier. The transferfunction between the $E_{\text {scat }}$ and the demodulated signal s_{n} is:

$$
\begin{equation*}
s_{n}=\left|s_{n}\right| e^{i \phi_{n}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} E_{\text {scat }, p}(z+\delta z \cos \psi) e^{i n \psi} d \psi, \tag{4}
\end{equation*}
$$

where z and δz are average tip-sample distance, and the amplitude of vertical tip-oscillation, respectively.

In the numerical sSNOM modeling, dielectric constant of SiO_{2} and Si is obtained by Sellmeier equations. ${ }^{9}$. The tip (PtIr) is made of an alloy of Pt: $\mathrm{Ir}=70: 30$. In the model, the tip is assumed to be a nanosphere with pure Pt with $\varepsilon=-144+75 \mathrm{i}$ at 0.366 eV and $-1324+916 \mathrm{i}$ at 0.124 $\mathrm{eV}^{10,11}$. In the model, the tip is assumed to be a nanosphere with an effective radius of a, and this does not necessarily reflect the actual radius of curvature of the tip-end. As such, we treat the radius of curvature (a), average tip-sample distance (z_{0}), and tip-oscillation amplitude (δz) as fitting parameters. The tip parameters are chosen such that it gives the best match to the
experimental sSNOM intensities of AB-BLG at ω_{1} and ω_{2}, and the same parameters are used for the calculation of sSNOM intensities of AA-BLG at the two photon energies. For the model calculation shown in main text, we use tip radius as 20 nm , minimum tip-sample distance as 12 nm and tip oscillation amplitude as 35 nm .

D. Intensity and phase contrasts of sSNOM images of BLG

Figure S3. 2-dimensional intensity-phase ($\left|s_{2}\right|^{2}$ vs ϕ_{2}) histograms of sSNOM images (Figure S1i~1) at ω_{1} and ω_{2} frequencies, along with sSNOM model of AB-BLG and AA-BLG (red dots). The intensity and phase contrasts of AB-BLG domain can be satisfactorily reproduced by the model, whereas the phase contrasts of AA'-BLG cannot be reproduced by the model that is based on the optical conductivity of AA-BLG.

Corresponding Author

Zee Hwan Kim, Department of Chemistry, Seoul National University, Seoul, 151-742, Korea

E-mail: zhkim@snu.ac.kr

Author Contributions

\ddagger These authors contributed equally.

Reference

1. C. C. Lu, Y. C. Lin, Z.Liu, C. H. Yeh, K. Suenaga and P. W. Chiu, ACS Nano, 2013, 7, 2587-2594.
2. X. D. Chen, W. Xin, W. S. Jiang, Z. B. Liu, Y. Chen and J. G. Tian, Adv. Mater., 2016, 28, 2563.
3. S. Sahoo, R. Palai and R. S. Katiyar, J. Appl. Phys., 2011, 110, 044320.
4. D. H. Yoon, H. R. Moon, Y.-W. Son, G. Samsonidze, B. H. Park, J. B. Kim, Y. P. Lee and H. S. Cheong, Nano Lett., 2008, 8, 4270-4274.
5. C.-H. Yeh, Y.-C. Lin, P. K. Nayak, C.-C. Lu, Z. Liu, K. Suenaga and P.-W. Chiu, Journal of Raman Spectroscopy, 2014, 45, 912-917.
6. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Physical Review Letters, 2006, 97, 187401.
7. J. Aizpurua, T. Taubner, F. J. de Abajo, M. Brehm and R. Hillenbrand, Opt. Express, 2008, 16, 1529-1545.
8. D.-S. Kim, H. Kwon, A. Y. Nikitin, S. Ahn, L. Martín-Moreno, F. J. García-Vidal, S. Ryu, H. Min and Z. H. Kim, ACS Nano, 2015, 9, 6765-6773.
9. D. C. D. M. Bass, J. Enoch, V. Lakshminarayanan, G. Li, C MacDonald, V Mahajan, E. Van Stryland, Handbook of Optics, McGraw-Hill, New York, 2009.
10. E. D. Palik, Handbook of Optical Constants, CRC press, 1998.
11. M. J. Weber, Handbook of Optical Materials, 2003.
