## **Electronic Supplementary Information**



Fig. S1. Optical photograph for CC, CoAl-LDH/CC, and Al-CoP/CC (from left to right).



Fig. S2. XRD pattern of CoAl-LDH scratched down from CC.



Fig. S3. SEM image for bare CC.



Fig. S4. TEM images for (a) AlCo-LDH and (b) Al-CoP.



Fig. S5. (a) XRD pattern for CoP scratched down from CC. (b) SEM images for CoP/CC.



Fig. S6. Mass-normalized polarization curves for Al-CoP/CC and CoP/CC in 0.5 M  $H_2SO_4$ .



**Fig. S7.**  $TOF_{avg}$  calculation of Al-CoP/CC and CoP/CC.



Fig. S8. (a) XRD pattern for Al-CoP and (b) SEM image for Al-CoP/CC after HER hydrolysis.

![](_page_8_Figure_0.jpeg)

**Fig. S9.** Chronopotentiometric curve of CoP/CC with constant current density of 50 mA cm<sup>-2</sup> for 80 h (without iR correction).

![](_page_9_Figure_0.jpeg)

**Fig. S10.** CVs of (a) CoP/CC and (c) Al-CoP/CC after electrolysis with various scan rates (5–100 mV s<sup>-1</sup>) in the region of 0.036 to 0.136 V. The capacitive current densities at 0.086 V as a function of scan rate for (b) CoP/CC and (d) Al-CoP/CC. All experiments were performed in 0.5 M  $H_2SO_4$ .

![](_page_10_Figure_0.jpeg)

Fig. S11. Polarization curves for HER of Al-doped CoP nanoarray on CC with different Al doping degree: 4% (curve 1), 10 % (curve 2), and 16 % (curve 3). All experiments were performed in 0.5 M  $H_2SO_4$  with a scan rate of 5 mV s<sup>-1</sup>.

![](_page_11_Figure_0.jpeg)

**Fig. S12.** (a) XRD pattern and (b) polarization curve for HER of Al-doped CoP nanoarray on CC with Al doping degree: 35%.

![](_page_12_Figure_0.jpeg)

**Fig. S13.** Chronopotentiometric curve of Al-CoP/CC with constant current density of 50 mA cm<sup>-2</sup> for HER in 1.0 M KOH (without iR correction).

![](_page_13_Figure_0.jpeg)

**Fig. S14.** Chronopotentiometric curve of Al-CoP/CC with constant current density of 50 mA cm<sup>-2</sup> for OER in 1.0 M KOH (without iR correction).

![](_page_14_Figure_0.jpeg)

**Fig. S15.** (a)XRD pattern for Al-CoP after OER electrolysis and (b) Raman spectra for Al-CoP before and after OER electrolysis in 1.0 M KOH.

![](_page_15_Figure_0.jpeg)

**Fig. S16.** Polarization curves for (a) HER and (b) OER with a scan rate of 5 mV s<sup>-1</sup>. (c) Polarization curve of Al-CoP/NFIAl-CoP/NF in a two-electrode setup for full water splitting with a scan rate of 5 mV s<sup>-1</sup>. All experiments were performed in 1.0 M KOH.

![](_page_16_Figure_0.jpeg)

**Fig. S17.** (a) Polarization curve of Al-CoP/NFAl-CoP/NF in a two-electrode setup for full water splitting with a scan rate of 5 mV s<sup>-1</sup> in 1.0 M KOH at 65 °C.

| Catalyst                                             | <i>j</i> (mA cm <sup>-2</sup> ) | Overpotential<br>(mV) | Ref.      |
|------------------------------------------------------|---------------------------------|-----------------------|-----------|
| CoP nanowire/CC                                      | 10                              | 67                    | 1         |
| CoP/CNT                                              | 10                              | 122                   | 2         |
| CoP/Ti                                               | 10                              | 90                    | 3         |
| hollow CoP<br>nanoparticles                          | 10                              | 75                    | 4         |
| urchin-like CoP<br>nanocrystals                      | 10                              | ~95                   | 5         |
| CoP<br>nanosheet/CC                                  | 10                              | 49                    | 6         |
| Co <sub>2</sub> P nanopartical                       | 10                              | 95                    | 7         |
| u-CoP/Ti                                             | 10                              | 45                    | 8         |
| CoP hollow<br>polyhedron                             | 10                              | 159                   | 9         |
| Co <sub>2</sub> P branched<br>nanostructures         | 10                              | 120                   | 10        |
| CoP <sub>2</sub> /RGO                                | 10                              | 70                    | 11        |
| CoP/rGO-400                                          | 10                              | 105                   | 12        |
| Fe <sub>0.5</sub> Co <sub>0.5</sub> P                | 10                              | 130                   | 13        |
| Co <sub>0.59</sub> Fe <sub>0.41</sub> P<br>nanocubes | 10                              | 72                    | 14        |
| Fe <sub>0.5</sub> Co <sub>0.5</sub> P/CC             | 10                              | 37                    | 15        |
| C@NiCoP                                              | 10                              | 276                   | 16        |
| CoPS                                                 | 10                              | 48                    | 17        |
| CoS P/CNT                                            | 10                              | 48                    | 18        |
| Al-CoP/CC                                            | 10                              | 23                    | This work |

Table S1. Comparisons of HER performances of Al-CoP/CC with other Co-based phosphides HER catalysts in  $0.5 \text{ M H}_2\text{SO}_4$ .

**Table S2.** Comparisons of HER performances of Al-CoP/CC and Al-CoP/NF with CoP catalysts and other non-precious metal HER catalysts in 1.0 M KOH.

| Catalyst                                             | j (mA cm <sup>-2</sup> ) | Overpotential<br>(mV) | Ref.      |
|------------------------------------------------------|--------------------------|-----------------------|-----------|
| CoP nanowire/CC                                      | 10                       | 209                   | 1         |
| u-CoP/Ti                                             | 10                       | 72                    | 8         |
| CoP/rGO-400                                          | 10                       | 340                   | 12        |
| CoP-MNA/NF                                           | 10                       | 54                    | 19        |
| np-CoP NWs/Ti                                        | 10                       | 100                   | 20        |
| Co-P                                                 | 10                       | 94                    | 21        |
| CoP <sub>2</sub> /RGO                                | 10                       | 88                    | 22        |
| NiP <sub>2</sub> NS/CC                               | 10                       | 102                   | 23        |
| FeP NAs/CC                                           | 10                       | 218                   | 24        |
| MoP <sub>2</sub> /CC                                 | 10                       | 67                    | 25        |
| a-CoSe/Ti                                            | 10                       | 121                   | 26        |
| NiSe/NF                                              | 10                       | 96                    | 27        |
| MoC <sub>x</sub>                                     | 10                       | 151                   | 28        |
| np-CuTi                                              | 10                       | 50                    | 29        |
| NiMo HNRs/TiM                                        | 10                       | 92                    | 30        |
| Ni/NiO-CNT                                           | 10                       | 100                   | 31        |
| NiS nanoframes                                       | 10                       | 94                    | 32        |
| CoO <sub>x</sub> @CN                                 | 10                       | 230                   | 33        |
| NiCo <sub>2</sub> O <sub>4</sub>                     | 10                       | 110                   | 34        |
| Ni <sub>0.33</sub> Co <sub>0.67</sub> S <sub>2</sub> | 10                       | 73                    | 35        |
| NiCoP/NF                                             | 50                       | 133                   | 36        |
| NiCoP/NF                                             | 10                       | 32                    | 37        |
| Al-CoP/CC                                            | 10                       | 38                    |           |
| Al-CoP/NF                                            | 50                       | 64                    | This work |
|                                                      | 36                       | 50                    |           |

**Table S3.** Comparisons of OER performances of Al-CoP/CC and Al-CoP/NF with CoP catalysts and other non-precious metal OER catalysts in 1.0 M KOH.

| Catalyst                                             | <i>j</i> (mA cm <sup>-2</sup> ) | Overpotential<br>(mV) | Ref.       |
|------------------------------------------------------|---------------------------------|-----------------------|------------|
| CoP-MNA/NF                                           | 10                              | 290                   | 19         |
| Co-P                                                 | 10                              | 345                   | 21         |
| a-CoSe/Ti                                            | 10                              | 292                   | 26         |
| CoOx@CN                                              | 10                              | 260                   | 33         |
| NiCo <sub>2</sub> O <sub>4</sub>                     | 10                              | 230                   | 34         |
| Ni <sub>0.33</sub> Co <sub>0.67</sub> S <sub>2</sub> | 10                              | 330                   | 35         |
| NiCoP/NF                                             | 50                              | 308                   | 36         |
| NiCoP/NF                                             | 10                              | 280                   | 37         |
| Co/Co <sub>2</sub> P@NF                              | 10                              | 190                   | 38         |
| NiFe-LDH/CNT                                         | 10                              | 258                   | 39         |
| LNiFeP/rGO                                           | 10                              | 247                   | 40         |
| PCPTF                                                | 10                              | 300                   | 41         |
| Co-Bi NS/G                                           | 10                              | 290                   | 42         |
| Ni <sub>2</sub> P particles                          | 10                              | 290                   | 43         |
| Zn <sub>x</sub> Co <sub>3-x</sub> O <sub>4</sub>     | 10                              | 320                   | 44         |
| Ni <sub>x</sub> Co <sub>3-x</sub> O <sub>4</sub>     | 10                              | 370                   | 45         |
| Co <sub>3</sub> O <sub>4</sub> C-NA                  | 10                              | 290                   | 46         |
| Al-CoP/CC                                            | 10                              | 265                   | This       |
| Al-CoP/NF                                            | 50                              | 280                   | I IIS WORK |

 $j (\text{mA cm}^{-2})$ Voltage (V) Ref. Catalyst CoP-MNA CoP-MNA 10 19 1.62 Co-P||Co-P 10 1.65 21 CoP<sub>2</sub>/RGO<sup>II</sup>CoP<sub>2</sub>/RGO 10 1.56 22 a-CoSe/Tila-CoSe/Ti 10 1.65 26 NiSe/NFINiSe/NF 10 1.63 27 10 NiMo HNR/TiMINiMo 1.64 30 HNR/TiM 10 34 NiCo<sub>2</sub>O<sub>4</sub>||NiCo<sub>2</sub>O<sub>4</sub> 1.65 NiCoP/NFINiCoP/NF 50 1.77 36 NiCoP/NFINiCoP/NF 10 1.58 37 Ni<sub>2</sub>P/NFINi<sub>2</sub>P/NF 10 1.63 43 Co<sub>2</sub>B||Co<sub>2</sub>B 10 1.61 47  $Ni_5P_4||Ni_5P_4||$ 10 below 1.70 48 NiCo<sub>2</sub>S<sub>4</sub>/CC||NiCo<sub>2</sub>S<sub>4</sub>/CC| 10 49 1.68  $Co_{0.13}Ni_{0.87}Se_2 \|Co_{0.13}Ni_{0.87}\|$ 1.62 50 10 Se<sub>2</sub> NiFe<sub>2</sub>N<sub>2</sub>||NiFe<sub>2</sub>N<sub>2</sub> 10 51 1.65

1.70

1.56

1.69

1.56

1.62

52

This work

NiFe LDH/NFINiFe

Al-CoP/CCIAl-CoP/CC

Al-CoP/NFIAl-CoP/NF

LDH/NF

**Table S4.** Comparisons of overall water-splitting performance of Al-CoP/CC and Al-CoP/NF with other non-nobel-metal bifunctional catalysts in 1.0 M KOH.

10

10

50

30

50

## References

- 1 J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- 2 Q. Liu, J. Tian, A. M. Asiri and X. Sun, Angew. Chem., Int. Ed., 2014, 53, 6710-6714.
- 3 Z. Pu, Q. Liu, P. Jiang, A. M. Asiri and A. Y. Obaid, X. Sun, Chem. Mater., 2014, 26, 4326-4329.
- 4 E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis and R. E. Schaak, *Angew. Chem., Int. Ed.*, 2014, 53, 5427-5430.
- 5 H. Yang, Y. Zhang, F. Hu and Q. Wang, Nano Lett., 2015, 15, 7616-7620.
- 6 X. Yang, A. Lu, Y. Zhu, M. Ne. Hedhili, S. Min, K. Huang, Y. Han and L. Li, *Nano Energy*, 2015, 15, 634-641.
- 7 J. F. Callejas, C. G. Read, E. P. Popczun, J. M. McEnaney and R. E. Schaak, *Chem. Mater.*, 2015, 27, 3769-3774.
- 8 D. Zhou, L. He, W. Zhu, X. Hou, K. Wang, G. Du, C. Zheng, X. Sun and A. M. Asiri, *J. Mater. Chem. A*, 2016, **4**, 10114-10117.
- 9 M. Liu and J. Li, ACS Appl. Mater. Interfaces, 2016, 8, 2158-2165.
- 10 E. J. Popczun, C. W. Roske, C. G. Read, J. C. Crompton, J. M. McEnaney, J. F. Callejas, N. S. Lewis and R. E. Schaak, *J. Mater. Chem. A*, 2015, **3**, 5420-5425.
- 11 J. Wang, W. Yang and J. Liu, J. Mater. Chem. A, 2016, 4, 4686-4690.
- 12 L. Jiao, Y. Zhou and H. Jiang, Chem. Sci., 2016, 7, 1690-1695.
- 13 J. Kibsgaard, C. Tsai, K. Chan, J. D. Benck, J. K. Nørskov, F. Abild-Pedersen and T. F. Jaramillo, *Energy Environ. Sci.*, 2015, **8**, 3022-3029.
- 14 J. Hao, W. Yang, Z. Zhang and J. Tang, Nanoscale, 2015, 7, 11055-11062.
- 15 C. Tang, L. Gang, R. Zhang, W. Lu, X. Jiang, X. Jiang, A. M. Asiri, X. Sun, J. Wang and L. Chen, *Nano. Lett.*, 2016, 16, 6617-6621.
- 16 Y. Bai, H. Zhang, L. Liu, H. Xu and Y. Wang, Chem. Eur. J., 2016, 22, 1021-1029.
- 17 M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. Chang, M.-L. Tsai, J.-H. He and S. Jin, *Nat. Mater.*, 2015, 14, 1245-1251.
- 18 W. Liu, E. Hu, H. Jiang, Y. Xiang, Z. Weng, M. Li, Q. Fan, X. Yu, E. I. Altman and H. Wang, *Nat. Commun.*, 2016, 7, 10771.
- 19 Y. Zhu, Y. Liu, T. Ren and Z. Yuan, Adv. Funct. Mater., 2015, 25, 7337-7347.
- 20 S. Gu, H. Du, A. M. Asiri, X. Sun and C. Li, Phys. Chem. Chem. Phys., 2014, 16, 16909-16913.
- 21 N. Jiang, D You, M. Sheng and Y. Sun, Angew. Chem., Int. Ed., 2015, 54, 6251-6254.
- 22 J. Wang, W. Yang and J. Liu, J. Mater. Chem. A, 2016, 4, 4686-4690.
- 23 P. Jiang, Q. Liu and X. Sun, Nanoscale, 2014, 6, 13440-13445.
- 24 Y. Liang, Q. Liu, A. M. Asiri, X. Sun and Y. Luo, ACS Catal., 2014, 4, 4065-4069.

- 25 W. Zhu, C. Tang, D. liu, J. Wang, A. M. Asiri and X. Sun, J. Mater. Chem. A, 2016, 4, 7169-7143.
- 26 T. Liu, Q. Liu, A. M. Asiri, Y. Luo and X. Sun, Chem. Commun., 2015, 51, 16683-16686.
- 27 C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, Angew. Chem., Int. Ed., 2015, 54, 9351-9355.
- 28 H. B. Wu, B. Y. Xia, L. Yu, X. Y. Yu and X. W. Lou, Nat. Commun., 2015, 25, 6512.
- 29 Q. Lu, G. S. Hutchings, W. Yu, Y. Zhou, R. V. Forest, R. Tao, J. Rosen, B. T. Yonemoto, Z. Cao, H. Zheng, J. Q. Xiao, F. Jiao and J. G. Chen, *Nat. Commun.*, 2015, 6, 6567.
- 30 J. Tian, N. Cheng, Q. Liu, X. Sun, Y. He and A. M. Asiri, J. Mater. Chem. A, 2015, 3, 20056-20059.
- 31 M. Gong, Z. Wu, M.-C. Tsai, J. Zhou, M. Guan, M. Lin, B. Zhang, Y. Hu, D. Wang, J. Yang, S. J. Pennycook, B.-J. Hwang and H. Dai, *Nat. Commun.*, 2014, 5, 4695.
- 32 X. Yu, L. Yu, H. Wu and X. Lou, Angew. Chem., Int. Ed., 2015, 54, 5331-5335.
- 33 H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang and Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688-2694.
- 34 X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong and X. Zhang, Angew. Chem., Int. Ed., 2016, 55, 1-6.
- 35 Z. Peng, D. Jia, A. M. Al-Enizi, A. Elzatahry and G. Zheng, Adv. Energy Mater., 2015, 5, 1402031.
- 36 Y. Li, H. Zhang, M. Jiang, Y. Kuang, X. Sun and X. Duan, Nano Res., 2016, 9, 2251.
- 37 H. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschlögl and H. N. Alshareef, *Nano Lett.*, 2016, 16, 7718-7725.
- 38 J. Masa, S. Barwe, C. Andronescu, I. Sinev, A. Ruff, K. Jayaramulu, K. Elumeeva, B. Konkena, B. R. Cuenya and W. Schuhmann, ACS Energy Lett., 2016, 1, 1192-1198.
- 39 M. Gong, Y. Li, H. Wang, Y. Liang, J. Wu, J. Zhou, J. Wang, T. Regier, F. Wei and H. Dai, *J. Am. Chem. Soc.*, 2013, **135**, 8452-8455.
- 40 Y. Liu, H. Wang, D. Lin, C. Liu, P. C. Hsu, W. Liu, W. Chen and Y. Cui, *Energy Environ. Sci.*, 2015, 8, 1719-1724.
- 41 Y. Yang, H. Fei, G. Ruan, J. M. Tour and Adv. Mater., 2015, 27, 3175-3180.
- 42 Chen, P. K. Xu, T. Zhou, Y. Tong, J. Wu, H. Cheng, X. Lu, H. Ding, C. Wu and Y. Xie, *Angew. Chem., Int. Ed.*, 2016, **55**, 2488-2492.
- 43 L.-A. Stern, L. Feng, F. Song and X. Hu, Energy Environ. Sci., 2015, 8, 2347-2351.
- 44 X. Liu, Z. Chang, L. Luo, T. Xu, L. Liu and X. Sun, Chem. Mater., 2014, 26, 1889-1895.
- 45 Y. Li, P. Hasin and Y. Wu, Adv. Mater., 2010, 22, 1926-1929.
- 46 T. Ma, S. Dai, M. Jaroniec and S. Qiao, J. Am. Chem. Soc., 2014, 136, 13925-13931.
- 47 J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun, C. Somsen, M. Muhler and W. Schuhmann, *Adv. Energy Mater.*, 2016, **6**, 1502313.
- 48 M. Ledendecker, S. K. Calderyn, C. Papp, H.-P. Steinrück, M. Antonietti and M. Shalom, *Angew. Chem., Int. Ed.*, 2015, **54**, 12361-12365.
- 49 D. Liu, Q. Lu, Y. Luo, X. Sun and A. M. Asiri, Nanoscale, 2015, 7, 15122-15126.

- 50 T. Liu, A. M. Asiri and X. Sun, Nanoscale, 2016, 8, 3911-3915.
- 51 M. Jiang, Y. Li, X. Sun and X. Duan, Inorg. Chem. Front., 2016, 3, 630-634.
- 52 J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. Fan and M. Grätzel, *Science*, 2014, **345**, 1593-1596.