Supporting Information

Prediction of a New BeC Monolayer with Perfectly Planar Tetracoordinate Carbons[†]

Chun-Sheng Liu*, Hao-Hao Zhu, Xiao-Juan Ye* and Xiao-Hong Yan

Key Laboratory of Radio Frequency and Micro-Nano Electronics of

Jiangsu Province, College of Electronic Science and Engineering,

Nanjing University of Posts and Telecommunications, Nanjing 210023,

China

E-mail: csliu@njupt.edu.cn; yexj@njupt.edu.cn

Figure S1. Top view of the BeC monolayer and other lying isomers found by the particle swarm search. Optimized coordinates of the unit cell for the lowest-energy structure with a=b=4.35 Å, c=20 Å, $\alpha = \beta = 90^{\circ}$ and $\gamma = 83.15^{\circ}$. The green and grey balls represent Be and C atoms.

atom	x	У	Z
Be	0.336607	0.336607	0.5
Be	0.237067	0.850657	0.5
Be	0.850657	0.237067	0.5
С	0.856937	0.856937	0.5
С	0.0185469	0.561707	0.5
С	0.561707	0.0185469	0.5

TableS1. The Hirshfeld Charge analysis of the BeC monolayer.

atoms	Hirshfeld Charge(e)
Be1	0.18
Be2	0.18
Be3	0.20
C1	-0.25
C2	-0.25
C3	-0.06

	Bond	Overlap Population
Covalent bond	C1-C3	1.15
	C2-C3	1.15
	Be3-C2	0.78
	Be3-C1	0.78
Partially covalent/ionic bond	Be2-C1	0.52
	Be1-C2	0.52
Ionic bond	Be2-C2	0.05
	Be1-C1	0.05
	Be1-C3	0.13
	Be2-C3	0.13

TableS2.The overlap population analysis of BeC.

Figure S2. The optimized structure of the BeC monolayer with the Be_3 atom deficient in the primitive cell. The green and grey balls represent Be and C atoms.

In-plane stiffness calculation method

The in-plane stiffness(C) is defined as $C = \left[\frac{\partial E}{\partial \delta^2}\right] / S_0$, in which E is the total energy, δ stands for the applied uniaxial strain and S₀ is the area of the optimized structure. To compute the in-plane stiffness(C), we dilate the lattice of the cell up to 1.5% and the total energy – deformation is shown in FigureS3.

Figure S3. Strain-total energy relations of the BeC monolayer. $\Delta l/l_0$ is the dilation of the lattice constant.

Carrier mobility calculation method

The acoustic-phonon-limited carrier mobility (μ) in 2D materials under effective mass approximation can be expresses as:¹⁴

$$\mu = \frac{2eh^{3}C}{3k_{B}T\left|m^{*}\right|^{2}E_{1}^{2}} \qquad (2)$$

Here, T is the temperature (set at 300K), C is the elastic modulus (in-plane stiffness) and m* is the effective mass. The deformation potential constant E_1 is derived from $\Delta E = E_1 (\Delta l/l_0)$, in which ΔE is the energy shift of band edge with respect to lattice

dilation ($\Delta l/l_0$). The positions of VBM and CBM with respect to the strain are plotted in Figure S4.

Figure S4. Shifts of VBM and CBM under uniaxial strains for monolayer BeC. $\Delta l/l_0$ is the dilation of lattice constant. The vacuum level is set at 0 for reference.

Reference:

- 1. J. Dai, X. C. Zeng, Angew. Chem., 2015, 127, 7682-7686.
- 2. M. Q. Long, L. Tang, D. Wang, L. Wang, Z. Shuai, J. Am. Chem.Soc., 2009, 131, 17728-17729.
- 3. Y. Cai, G. Zhang, Y.-W. Zhang, J. Am. Chem. Soc., 2014, 136, 6269-6275.
- 4. J. Qiao, X. Kong, Z. X. Hu, F. Yang, W. Ji, Nat. Commun., 2014, 5, 4475.