Supporting information

Section I: Supporting preparation & calculation processes

S1: Preparation processes of the reference samples

i) Low-carbon aggregated reference sample

To prepare the low-carbon aggregated reference sample, the precursor of NaV₃(PO₄)₃ was prepared by a sol-gel process. The starting materials of ammonium metavanadate, sodium carbonate, ammonium dihydrogen phosphate and oxalic acid were dissolved in 30 mL distilled water to form a uniform solution. Then the mixture was stirring at 80 °C for six hours, followed by drying in an oven over a night to achieve the precursor. Finally, the precursor was calcinated at 900 °C for 10 hours under Ar/H₂ (95/5 in volume) atmosphere to achieve the aggregated low-carbon reference sample.

ii) Random arranged hybrid nanofiber

To prepare the random arranged NaV₃(PO₄)₃@C hybrid nanofiber, the precursor of NaV₃(PO₄)₃ was prepared firstly. The starting materials of ammonium metavanadate, sodium acetate and phosphate acid were dissolved in 30 mL distilled water to form a uniform solution. Then the mixture was stirring at 80 °C for six hours, followed by drying in an oven over a night to achieve the precursor. Next, the sol for electrospinning is prepared through mixing the prepared precursor, PVA polymer and acetic acid (30 wt.%) at room temperature. After continuously stirring for 12 hours, the transport and viscid solution was obtained. The resulting precursor was transferred into a syringe connected a stainless steel needle. A high potential of 16 kV was applied on the needle relative to a flat plate positioned at about 12 cm from the tip of the needle. The flow rate of the precursor sol was controlled using a syringe pump at 0.8 mL h⁻¹. After electrospinning, the collected fibers film was peeled off from the collector and calcinated at 900 °C for 10 hours under Ar/H₂ (95/5 in volume) atmosphere.

S2: Calculation process for sodium intercalation coefficients

The diffusion coefficient of sodium-ion (D_{Na}) can be calculated on the basis of the Randles-Sevcik equation,

$$i_{\rho} = 0.4463 \left(\frac{F}{RT}\right)^{1/2} n^{3/2} A D_{Na}^{1/2} C^* v^{1/2}$$
(1)

Where i_p , n, A, C^* and v are the peak current, number of exchanged electrons, surface area, sodium concentration and sweep rate, respectively.

Section II: Supporting figures

Figure S1 (a) Zigzag chain and (b) the rigid rod-shaped block in the NaV₃(PO₄)₃ crystal.

····-01-V1-01-P1-01-V1-01-···

_p2⁰⁴_v2⁰²_v2⁰⁴_p2

Figure S2 Comparison of the XRD patterns of full discharged $NaV_3(PO_4)_3$ in aqueous (a) and organic (b) electrolytes.

Figure S3 Comparison of the physical characteristics, including carbon content (a), BET area (b) and pore volume (c) of the aligned nanofiber, random arranged nanofiber and large aggregated reference samples.

Figure S4 Galvanostatic charge/discharge curves of the aligned $NaV_3(PO_4)_3$ nanofiber in different voltage ranges. The narrow voltage range (a) results in a higher coulombic efficiency and a lower capacity than those obtained in a wide voltage range (b) of present work.

