Supplementary Information

Free-energy predictions and absorption spectra calculations for supramolecular nanocarriers and their photoactive cargo

Adriana Pietropaolo,*a Sicheng Tangb and Françisco M. Raymo*b

^a Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa 88100, Catanzaro; E-mail: apietropaolo@unicz.it

^b Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA; E-mail: fraymo@miami.edu

Contents

1. Details on the electronic absorption spectra calculations	S2
2. Tables of the oscillator strengths	S 3
3. Tables of the coordinates of BODIPY chromophores	S7
4. Figures of the free-energy convergence	S15

Details on the Electronic absorption spectra calculations

The oscillator strengths were calculated for the monomer and stacked BODIPY chromophores. In particular, we clustered the BODIPY molecules belonging to each nanoparticle free-energy minima. Those resulted in two sets of clusters for the BODIPY monomer and one set of clusters for dimers and trimers.

Fifty singlet excited states were calculated at the TD-DFT framework with the B97-D¹ functional and 6-31G** basis sets using Gaussian 09 package.²

The oscillator strengths f_{0n} are related to the transition dipole moment³ by equation 5)

$$f^{0n} = \frac{2}{3}\omega^{0n}|\boldsymbol{\mu}^{0n}|^2$$
 5)

 μ_{0n} is the electric transition dipole moment associated with an electronic transition $0 \rightarrow$ n and and ω^{0n} are the excitation energies for the specific transition.^{3,4}

The calculations of the absorption spectra at a given wavelength, λ , were done assuming Gaussian bands with 600 cm⁻¹ full width at half-height (from 200 nm to 800 nm) for all transitions centered in a given excitation wavelength. A factor of 2.8710⁴ was applied in order to account for the conversion between oscillator strengths and the molar extinction coefficients.⁵

The values of the oscillator strengths calculated at TD-DFT level, within the B97-D functional19 and 6-31G** basis sets, are reported below.

Table S1. Osci	llator strengths and relative wavelengths for the BODIPY monomer.
0.0586	526.64
0.4241	455.26
0.0032	431.44
0.0547	378.54
0.1477	364.89
0.0135	347.05
0.0050	326.44
0.0699	324.62
0.0049	301.71
0.0397	297.82
0.0192	295.97
0.0156	290.00
0.0054	264.59
0.0100	262.72
0.0086	260.77
0.0037	258.25
0.0010	256.08
0.0006	248.16
0.0012	242.32
0.0292	240.88
0.0534	239.78
0.0058	236.33
0.0036	235.43
0.0345	229.97
0.0161	228.69
0.0006	226.76
0.0156	224.69
0.0011	221.35
0.0003	219.68
0.0851	214.17
0.0090	210.71
0.0075	208.57
0.0106	207.99
0.0271	205.67
0.0053	205.09
0.0048	202.91
0.0009	201.21
0.0190	200.56
0.0014	198.54
0.0258	198.00
0.0673	197.43
0.0632	197.26
0.0025	196.18
0.0056	195.70
0.0055	194.69
0.0036	194.25
0.0012	193.86
0.1104	192.17
0.0433	191.36
0.0467	191.03

Table S2. Oscil	lator strengths and relative wavelengths for the second BODIPY
monomer.	
0.2853	461.75
0.1973	26.78
0.0024	376.76
0.0187	375.01
0.0025	303.97
0.0016	295.49
0.0068	287.46
0.0093	278.13
0.0013	273.58
0.0294	272.48
0.0003	265.68
0.0003	255.38
0.0040	253.50
0.0034	252.65
0.0020	249.79
0.0025	239.29
0.1592	237.25
0.0101	230.99
0.0375	228.92
0.0050	224.10
0.0007	222.56
0.0071	222.39
0.1013	220.52
0.0034	220.11

0.0088

0.0128

0.0027

0.0013 0.0079

0.0054

0.0002

0.0014

0.0189 0.0020

0.0043

0.0053

0.0155

0.0106

0.0106

0.0008

0.0078

0.0166

0.0125 0.0067

0.0510

0.0013

0.0061

216.89

215.75

214.31 211.90

211.01

208.29

207.69

206.66 203.77

203.11

201.86

201.48

199.75

198.40

198.30

197.06

196.44

195.81 194.97

194.05

193.82

192.54

192.03

Table S2. Oscillator strengths and relative wavelengths for the second BODIF	۶Y
monomer.	

Table S3. Osc	illator strengths and relative wavelengths for the BODIPY dimer.
0.0014	788.63
0.0011	586.83
0.0009	562.11
0.0039	514.13
0.0238	492.59
0.0005	475.13
0.0116	463.75
0.0963	456.93
0.4864	427.41
0.0207	417.51
0.0058	413.97
0.3672	403.93
0.0104	399.22
0.0005	391.39
0.0003	380.31
0.0000	379.34
0.0005	371.80
0.0067	361.18
0.0090	358.39
0.0002	317.97
0.0000	316.21
0.0002	312.23
0.0005	311.99
0.0016	308.27
0.0030	305.70
0.0385	303.32
0.0596	302.58
0.0074	302.39
0.0001	302.15
0.0027	299.45
0.0038	297.47
0.0002	296.76
0.0005	295.66
0.0040	294.23
0.0349	293.49
0.0000	290.14
0.0020	288.50
0.0488	285.30
0.0001	283.58

0.0011

283.05

Table S4. Osci	llator strengths and relative wavelengths for the BODIPY trimer.
0.0002	822.31
0.0011	772.46
0.0022	734.21
0.0024	660.64
0.0031	651.72
0.0003	610.69
0.0002	574.06
0.0001	567.27
0.0026	530.82
0.0022	526.26
0.0002	515.03
0.0007	507.78
0.0189	497.80
0.0283	481.77
0.0072	480.34
0.0313	477.10
0.0020	473.36
0.0354	472.51
0.0176	465.78
0.0028	455.91
0.1471	453.78
0.0232	447.67
0.6588	440.82
0.0205	438.93
0.0258	432.40
0.0020	420.87
0.0016	417.78
0.1538	415.14
0.0022	414.03
0.0066	412.70
0.0003	395.36
0.0099	389.89
0.0070	384.38
0.0000	384.15
0.0001	383.47
0.0026	380.32
0.0013	377.69
0.0554	376.07
0.0074	374.91
0.0169	369.98
0.0405	368.26
0.0021	364.22
0.0024	364.13
0.0545	361.22
0.0789	359.91
0.0295	359.43
0.1640	355.57
0.0039	353.37
0.0442	351.79
0.0093	349.57

Table S5. Coordinates of the first monomer BODIPY conformer.Absolute energy= -1226.06069 Hartree

С	9.792 -20.332 25.231
н	10.175 -19.476 25.827
н	9.13 -20.084 24.374
н	9.323 -21.076 25.909
Ν	12.302 -20.962 25.143
с	11.045 -20.979 24.632
с	11.084 -21.728 23.462
с	12.362 -22.247 23.328
c	13.132 -21.708 24.326
c	9.951 -22.146 22.714
н	9 22 -21 31 22 726
н	10 3/2 -22 3/ 21 693
C C	9 312 -23 517 23 132
с u	10 071 24 221 22 220
п 	
н 	8.479 -23.868 22.487
н	8.834 -23.392 24.128
C	12.737 -23.278 22.228
н	13.351 -23.978 22.834
н	11.939 -23.93 21.812
Н	13.332 -22.818 21.411
F	12.622 -18.997 26.495
F	12.004 -20.925 27.574
В	12.767 -20.318 26.578
С	14.568 -21.856 24.642
Ν	14.297 -20.649 26.725
с	15.085 -20.14 27.777
с	16.435 -20.433 27.479
с	16.454 -21.179 26.341
c	15.117 -21.294 25.82
c	14.53 -19.35 28.902
н	13 533 -19 747 29 189
н	14 42 -18 327 28 484
н	15.2 -19.545 29.767
C C	17 524 - 20 15 28 457
L L	17.160 10.106 20.001
п С	18.499 -20.013 27.943
с 	17.942 -21.22 29.4
н	18.28 -22.138 28.8/2
н	17.017 -21.483 29.955
н	18.681 -20.839 30.137
С	17.801 -21.599 25.786
н	18.707 -21.216 26.303
н	17.886 -21.304 24.718
н	17.921 -22.701 25.869
С	15.438 -22.369 23.757
С	15.681 -21.905 22.471
н	15.336 -20.941 22.127
С	16.481 -22.563 21.54
н	16.651 -22.189 20.541
с	17.03 -23.745 21.992
н	17.592 -24.225 21.204
С	16.088 -23.589 24.156
н	15.842 -23.971 25.135

С	16.819	-24.275	23.189
н	17.254	-25.244	23.383

Table S6. Coordinates of the second monomer BODIPY conformer.Absolute energy= -1226.06941 Hartree

С	2.852334	-3.250029	-0.505486
н	3.493053	-3.519099	0.360118
н	2.034505	-4.000081	-0.453048
н	3.369696	-3.432731	-1.471525
7	1.177704	-1.343738	-0.216555
С	2.428966	-1.806703	-0.389742
С	3.318316	-0.711327	-0.321304
С	2.643598	0.382824	-0.163248
С	1.255335	0.027118	-0.151225
С	4.780781	-0.947280	-0.435206
н	4.978780	-1.865395	-1.029526
н	5.289056	-0.097829	-0.938911
С	5.367719	-1.141802	0.967308
н	6.454443	-1.305956	0.805312
н	4.923165	-2.057131	1.414864
н	5.081318	-0.315621	1.652288
С	3.377407	1.721778	0.092001
H	3.685274	2.185212	-0.869664
н	2.654044	2.404860	0.587033
н	4.239720	1.499222	0.755767
F	-0.401653	-3.238504	-0.957210
F	0.085518	-2.841153	1.340638
в	-0.064040	-2.221709	0.073124
c	0.075330	0.810753	-0.041219
N	-1.339629	-1.212801	0.130301
C	-2.652452	-1.515156	0.256706
c	-3.473913	-0.347762	0.136616
c	-2.572937	0.707119	0.038221
c	-1.229414	0.208025	0.026355
c	-3.256436	-2.905733	0.542861
н	-2.531331	-3,722273	0.333640
н	-4.155525	-3.202291	-0.037842
н	-3 362958	-2 847548	1 647655
c	-4.964134	-0.406812	0.254624
н	-5.273781	0.658520	0.195333
н	-5.241064	-0.667108	1,298622
c	-5.744115	-0.927623	-0.908402
н	-5.346775	-0.328296	-1.754770
н	-6.828231	-0.705513	-0.805906
н	-5.586134	-2.012863	-1.085871
c	-3 055786	2 141123	-0 179184
н	-3 988354	2 205012	-0 779975
н	-2,293463	2.853197	-0.561938
н	-3,242609	2.475567	0.864072
Ċ	0 242259	2.475507	0.004072
ĉ	0 874636	2.872341	-1 041099
н	1.320325	2.263697	-1.783620
c	0 886028	4 290640	-0.992337
н	1.396336	4.805860	-1.792519
••	2.000000		

С	0.289676	4.918236	0.084869
н	0.431472	5.977003	0.242229
С	-0.382009	2.803147	1.024526
н	-0.714579	2.193363	1.851463
С	-0.288012	4.180729	1.080216
н	-0.826553	4.710307	1.851877

Table S7. Coordinates of the stacked BODIPY dimer.Absolute energy= -2452.17921 Hartree

С	-5.904237	-1.357033	-1.912119
н	-6.860510	-0.921805	-1.551922
н	-5.579882	-0.658866	-2.713137
н	-6.086311	-2.305875	-2.462069
Ν	-4.092206	-0.433321	-0.332121
С	-4.879723	-1.486118	-0.762734
С	-4.413022	-2.613980	-0.065333
С	-3.501015	-2.198013	0.862693
С	-3.261440	-0.828340	0.671184
С	-4.977962	-3.925986	-0.300155
н	-5.000624	-4.412182	0.698019
н	-6.026991	-3.798330	-0.643527
С	-4.062696	-4.624784	-1.266663
н	-2.979149	-4.587538	-1.022392
н	-4.138880	-4.146867	-2.266222
н	-4.444464	-5.667894	-1.271094
С	-2.821179	-3.102614	1.904003
н	-3.136942	-4.163947	1.814008
н	-1.728344	-2.999858	1.734904
н	-3.150060	-2.664543	2.870939
F	-4.085486	1.241511	-2.257313
F	-5.468719	1.543342	-0.505024
В	-4.210610	1.029304	-0.875158
С	-2.376883	0.124663	1.338772
Ν	-3.171846	1.895076	-0.008011
С	-2.995654	3.228270	-0.185669
С	-1.983491	3.657360	0.673259
С	-1.525139	2.586988	1.329792
С	-2.328660	1.495526	0.968569
С	-3.859879	4.144226	-1.004393
н	-3.639368	5.185260	-0.683791
н	-4.932526	3.884654	-0.884600
н	-3.627346	4.126374	-2.090714
С	-1.321701	4.968525	0.600229
н	-1.474844	5.242525	-0.465511
н	-0.239820	4.907480	0.843403
С	-1.839509	6.011003	1.600471
н	-1.146627	6.849121	1.825643
н	-2.022136	5.494872	2.566657
н	-2.770326	6.463623	1.194219
С	-0.495541	2.689448	2.397942
н	-0.117210	1.682329	2.674674
н	-1.021958	3.057452	3.304052
н	0.378655	3.331499	2.155848
С	-1.629105	-0.249436	2.396880

С	-0.347087	-0.762202	2.172718
н	0.096445	-0.770089	1.188291
С	0.340660	-1.260812	3.239271
н	1.264786	-1.808351	3.124933
С	-0.095632	-1.214577	4.540631
н	0.510742	-1.562949	5.363510
С	-2.110151	-0.248635	3.693903
н	-3.039936	0.279037	3.848567
С	-1.296257	-0.615084	4.791987
н	-1.641505	-0.439500	5.799302
С	0.672708	3.234817	-1.963943
н	0.924453	4.282907	-2.231809
н	0.268624	2.645104	-2.814593
н	-0.158750	3.227178	-1.226887
Ν	1.964056	1.161044	-1.185048
С	1.927355	2.568308	-1.282985
С	3.113576	3.040685	-0.749275
C	3.909480	1.986516	-0.390905
C	3.183239	0.789472	-0.590929
C	3.413968	4.469156	-0.751794
H	2.407360	4.891413	-0.544908
н	4.020374	4.744868	0.136211
С	4.042560	5.119161	-2.000535
H	5.063575	4.681782	-2.027538
Н	4.048450	6.213219	-1.806648
н	3.482320	4.820283	-2.911280
С	5.251293	2.227846	0.253379
н	5.889422	1.336070	0.078768
н	5.634901	3.182890	-0.165985
н	4.970087	2.267801	1.327517
9	-0.396721	0.272748	-1.329861
9	1.070755	0.432826	-3.178344
5	0.938983	0.127944	-1.791572
С	3.489075	-0.559847	-0.345392
Ν	1.384709	-1.330198	-1.483012
С	0.794113	-2.518551	-1.737137
С	1.593830	-3.565458	-1.245880
С	2.696064	-3.027955	-0.629406
С	2.660774	-1.620404	-0.769804
С	-0.552128	-2.572574	-2.457218
н	-1.387327	-2.263790	-1.792237
н	-0.921145	-3.519783	-2.906775
н	-0.460299	-1.751176	-3.199678
С	1.079218	-4.892833	-1.342420
н	1.948311	-5.583203	-1.395140
н	0.582781	-4.998480	-2.330777
С	0.166638	-5.316267	-0.240742
н	-0.683473	-4.603572	-0.191668
н	0.718796	-5.201096	0.717524
н	-0.053386	-6.396037	-0.384039
С	3.748510	-3.932732	-0.021801
н	3.115497	-4.765175	0.353981
н	4.163941	-3.375147	0.844246
н	4.576940	-4.309351	-0.659605
C	4.731527	-0.894341	0.172881
С	5.037591	-0.597877	1.460885
н	4.396273	0.009731	2.082375

С	6.242234	-0.885181	2.007095
н	6.343210	-0.699048	3.065807
С	7.208326	-1.506476	1.214203
н	8.131714	-1.845335	1.661250
С	5.670847	-1.563425	-0.584649
н	5.429675	-1.770382	-1.616483
С	6.954714	-1.843821	-0.108652
н	7.688239	-2.405267	-0.669043

Table S8. Coordinates of the stacked BODIPY trimer.Absolute energy= -3678.27120 Hartree

С	7.616597	-2.774530	-2.561910
Н	7.209910	-2.323643	-3.492604
н	8.696911	-2.549861	-2.434908
н	7.481128	-3.875519	-2.615445
Ν	6.678232	-1.069075	-0.899169
С	6.966081	-2.379718	-1.273149
С	6.495835	-3.258712	-0.312427
С	5.915966	-2.545440	0.696359
С	6.043529	-1.127611	0.299761
С	6.959348	-4.634956	-0.231385
Н	7.958728	-4.743324	-0.703619
н	7.256847	-5.081139	0.741959
С	6.037239	-5.619613	-0.841354
н	5.584181	-5.300577	-1.804451
н	5.222215	-5.755292	-0.099155
н	6.536917	-6.568108	-1.133441
С	5.080925	-3.190015	1.718268
н	5.636520	-3.241986	2.679647
н	4.146956	-2.600486	1.835804
Н	4.786466	-4.211802	1.397323
F	8.185024	0.354596	-2.129863
F	6.066424	-0.070109	-2.977926
В	6.782898	0.181241	-1.877127
С	5.589407	0.054493	0.922921
Ν	6.185702	1.329383	-1.058731
С	6.131083	2.619976	-1.449457
С	5.599304	3.370203	-0.446980
С	5.391609	2.564165	0.611869
С	5.711634	1.296025	0.274824
С	6.477913	3.091196	-2.863225
Н	5.704567	2.953845	-3.648128
н	7.338014	2.477608	-3.206393
н	6.663880	4.186983	-2.873228
С	5.538513	4.902858	-0.554528
Н	6.572024	5.150734	-0.878224
Н	5.394413	5.354527	0.450383
С	4.488926	5.455537	-1.474301
н	4.668913	6.531392	-1.682475
н	3.566628	5.290466	-0.877768
н	4.480252	4.874748	-2.421876
С	5.290993	3.132183	1.975619
Н	4.268062	3.475746	2.238109
н	5.883194	4.071469	1.937754

н	5.643577	2.561035	2.860835
С	5.030179	-0.046251	2.167161
С	5.694068	-0.543975	3.233690
н	6.717427	-0.871942	3.127809
С	5.133178	-0.585617	4.503311
н	5.760637	-0.828604	5.347554
С	3.845871	-0.107092	4.666360
н	3.491978	-0.138965	5.686852
C	3.732163	0.408552	2.402712
H	3,189630	0.780686	1.545561
C	3.101923	0.359790	3.603996
н	2,199757	0.918908	3,801519
c	2 789314	-1.566446	-1.233947
н	2 982973	-0 511448	-1 520785
н	3 706919	-0.511440	-0.883527
	2 /12000	2 207204	2 050275
N	2.412000	-2.207234	-2.033373
	1 706012	-0.303003	0.012316
	1.700013	-1.5105//	-0.192710
C	1.145551	-2.52/2/2	0.624820
C	0.076077	-2.064648	1.3/2466
C	-0.070790	-0.654292	1.062525
C	1.641076	-3.9130/2	0.551027
н	2.616829	-4.035378	0.034054
Н	1.773551	-4.441723	1.519549
С	0.694304	-4.921775	-0.150657
н	0.982730	-5.933530	0.208188
н	0.698312	-4.935530	-1.261330
н	-0.351043	-4.730563	0.172230
С	-0.768964	-2.854086	2.310494
н	-0.826512	-2.412938	3.328788
н	-1.806068	-2.931755	1.918961
н	-0.238350	-3.825850	2.229688
9	2.178936	1.673103	-0.447851
9	0.705404	0.853350	-2.072926
5	0.950313	1.069883	-0.676799
С	-1.009622	0.384930	1.489038
Ν	-0.169609	2.060738	-0.068439
С	-0.324890	3.412409	-0.326909
С	-1.393481	3.876336	0.475678
С	-1.744760	2.840506	1.350549
С	-1.029817	1.679081	0.971957
С	0.685192	4.208197	-1.105093
Н	0.437931	5.288191	-1.017337
н	0.753887	3.877471	-2.164188
н	1.694690	4.131072	-0.648053
c	-1.823432	5.315747	0.468881
н	-2 892544	5 277223	0.768219
н	-1 837725	5 823743	-0 519453
c	-1.143602	6 318926	1.385318
н	-0 056821	6.301486	1.157408
н	-1 286716	5 983002	2.137400 2 <u>4</u> 25272
ц Ц	-1.200/10	7 22//75	2.7332/3 1 2/1215
п С	-1.555004	2 00/0//	J.J41313
с µ	-2.041000	3.034344 A 156130	2.210000
n U	-2.4/9408	4.130120	2.004431
П	-2.3/0340	2.455619	3.385491
н	-3.692442	2.8/836/	2.23145/
C	-1.820355	0.029053	2.492972

С	-1.340703	-0.161434	3.831965
н	-0.294433	-0.101187	4.094935
С	-2.210983	-0.439562	4.821398
н	-1.794953	-0.592235	5.806246
С	-3.586677	-0.588346	4.555791
н	-4.187851	-0.831324	5.420011
С	-3.170995	-0.130090	2.254310
н	-3.571089	-0.160458	1.251595
С	-4.039945	-0.375276	3.311323
н	-4.988247	-0.757542	2.965172
С	-2.097687	-3.133880	-2.709347
н	-2.229528	-2.694774	-3.720604
н	-1.301427	-2.572953	-2.175258
н	-1.773741	-4.192088	-2.805696
N	-3.938505	-1.705839	-1.708605
c	-3.389579	-2.941933	-1.879523
c	-4.262131	-3.862830	-1.322256
Ċ	-5.342582	-3.198811	-0.813569
c	-5.087692	-1.827418	-1.020889
c	-4.039321	-5.287154	-1.283548
н	-2 943781	-5 404306	-1 146320
н	-4 597674	-5 796499	-0.469287
C	-4 376800	-5 919348	-2 593452
с ц	-3 729/100	-5./51019	-2.353452
н	-5.729400	-5.451019	-3.303471
 	-3.435381	-7.004757	-2.755072
п С	-4.103930	-7.009737	-2.303103
с u	-0.550451	-3.935855	-0.230177
п U	-7.445000	-3.402039	-0.707829
n u	-0.528000	-4.901403	-0.070822
	-0.531354	-3.922/8/	0.861289
9	-2.044340	-0.339388	-1.535003
9 F	-3.085115	-0.205515	-3.020314
5	-3.300173	-0.3258/0	-2.201534
	-5.898092	-0.703405	-0.048521
	-4.202039	0.844464	-1.000303
C C	-4.183062	2.219840	-1.928199
C	-5.26/6/3	2.850186	-1.335922
C	-6.031408	1.930545	-0.744667
C	-5.483085	0.622253	-1.022908
C	-2.958170	2.892517	-2.599947
н	-2.082678	2.228932	-2.764695
н	-2.664305	3.805682	-2.040528
Н	-3.445410	3.194458	-3.551/15
C	-5.450862	4.303049	-1.273014
н	-4.484517	4.778592	-1.545934
н	-5.542225	4.665064	-0.226091
С	-6.477973	4.890353	-2.210952
н	-6.457947	5.999801	-2.156309
н	-7.487457	4.645272	-1.818670
Н	-6.473725	4.543618	-3.267012
С	-7.186242	2.331715	0.109045
н	-8.090796	2.502789	-0.513555
н	-6.893046	3.254496	0.653594
н	-7.300251	1.596077	0.933271
С	-7.049307	-0.882072	0.044912
С	-7.179944	-1.474930	1.311661
н	-6.346198	-1.901569	1.850997

С	-8.382980 -1.575448 1.924826
н	-8.492566 -2.101786 2.860999
С	-9.500223 -1.156663 1.252593
н	-10.469952 -1.204356 1.723992
С	-8.249679 -0.552688 -0.685569
н	-8.268413 -0.292916 -1.734216
С	-9.422406 -0.559422 -0.002291
н	-10.343083 -0.163803 -0.405588

Figure S1. Free-energy convergence estimated from the free-energy difference between the four-sized nanoparticle free-energy basin and the six-sized nanoparticle free energy basin as a function of the metadynamics progress.

Figure S2. Free-energy convergence estimated from the free-energy difference between the four-sized free-energy nanoparticle basin and the five-sized nanoparticle free energy basin as a function of the metadynamics progress.

References

- 1. S. Grimme, J. Comput. Chem., 2006, 27, 1787.
- 2. Gaussian 09, Revision D.01, M. J. Frisch et al., Gaussian, Inc., Wallingford CT, 2009.
- 3. F. Furche, R. Ahlrichs, C. Wachsmann, E. Weber, A. Sobanski, F. Voegtle and S. Grimme, J. Am. Chem. Soc., 2000, **122**, 1717.
- 4. R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 1996, 256, 454.
- 5. S. Grimme, Rev. Comput. Chem., 2004, 20, 153.