Supporting Information

Superiority of boron, nitrogen and iron ternary doped carbonized graphene oxide-based catalyst for oxygen reduction in microbial fuel cells

Chun Cao ^{ab}, Liling Wei ^{a*}, Gang Wang ^{ab}, Jianquan Shen ^{a*}

^a Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green

Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P R

China

^b University of Chinese Academy of Sciences, Beijing, 100049, P R China

*Corresponding Author: E-mail: weill@iccas.ac.cn jqshen@iccas.ac.cn

Catalysts	GO content	PAN	Mass ratio	
	(mg)	content (g)	(PAN/GO)	H ₃ BO ₃
NFe–C	0	0.6	Non	Non
BNFeC	0	0.6	Non	Y
BNFe-C-G1	10	0.6	60	Y
BNFe-C-G2	20	0.6	30	Y
BNFe-C-G3	40	0.6	15	Y
BNFe-C-G4	80	0.6	7.5	Y

Table S1 The details of feeding raw for preparation of different catalysts

Non represents H_3BO_3 was not introduced, while Y means H_3BO_3 was introduced.

Fig. S1 SEM images of PAN microsphere and the particle size distribution (insert

graph).

Fig. S2 The FTIR spectrum of PAN (a) and GO/PAO (b).

Fig. S3 TEM images of GO.

Fig. S4 the images of (a) GO/PAN, (b) G/PAO and (c) BNFe-C-G.

Fig. S5 The low - magnification SEM images of BNFe–C–G.

Fig. S6 The SEM–EDS images of carbon layer in BNFe–C–G: (a) SEM image, (b) C element, (c) B element, (d) Fe element, (e) N element and (f) O element.

Fig. S7 The SEM–EDS images of graphene that introduced in BNFe–C–G: (a) SEM image, (b) C element, (c) B element, (d) Fe element, (e) N element and (f) O element.

Fig.S8 (a) the variation of C and O in different catalysts; the high–resolution XPS of nitrogen for BNFe–C–G1 (b), BNFe–C–G3 (c) and BNFe–C–G4 (d).

Fig. S9 The high-resolution XPS of Fe 2p within different catalysts.

Fig. S10 The CV curves (a) and electrochemical BET (b) of different catalysts measured by well–known Matsuda's equation. The electrolyte was a mixed solution of 5mM potassium ferrocyanide and 0.2 M Na₂SO₄, and the scan potential window was 0 - 0.5 V (vs. Ag/AgCl) with the scan rate of 10 mV s⁻¹.

Fig. S11 The CV curves (a) and electrochemical BET (b) of different catalysts measured by well–known Matsuda's equation. The electrolyte was a mixed solution of 5mM potassium ferrocyanide and 0.2 M Na₂SO₄, and the scan potential window was 0 - 0.5 V (vs. Ag/AgCl) with the scan rate of 10 mV s⁻¹.

Fig. S12 The CV curves of different catalysts in O_2 -saturated (a) and N_2 -saturated (b) PBS solution.

Fig. S13 The LSV curves of different catalysts in O₂-saturated PBS solution at

different rotation speeds: (a) NFe - C, (b) BNFe - C, (c) BNFe - C - G1, (d) BNFe -

Fig. S14 The EIS plots of different catalysts on RDE (electrolyte: 50 mM PBS).

Samples	Rs (ohm)	Rct (ohm)		
NFe - C	125	38		
BNFe - C	121	32		
BNFe - C - G2	105	27		

Table S2 the internal resistance (Rs) and the charge transfer resistance (Rct) of different catalysts on RDE (electrolyte: 50 mM PBS).

Koutecky–Levich equations:

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{j_L} = \frac{1}{j_k} + \frac{1}{B\omega^{1/2}}$$
 Eq. S(1)

Where, j represents the measured current density; ω is the angular velocity of the disk (ω =2 π N, N represents the linear rotation speed (rpm s⁻¹)); j_L and j_k represent the limiting diffusion and kinetic current density, respectively; B can be determined from the slope of the Koutecky–Levich plots based on the Levich equation as follows, Eq. (2):

$$B = 0.62nFC_0 (D_0)^{2/3} v^{-1/6}$$
 Eq. S(2)

Where, n represents the overall number of electrons transferred in oxygen reduction; the constant 0.62 is adopted when the rotating speed is expressed in rad s⁻¹; C₀ is the bulk concentration of O₂ (C₀=1.2 × 10⁻³ mol L⁻¹); F is the Faraday constant (F=96,485 C mol⁻¹); v is the kinetic viscosity of the electrolyte (v=0.01 cm² s⁻¹ in 0.1 M PBS); and D₀ is the diffusion coefficient of O₂ in 0.1 M PBS (D₀ = 1.9×10^{-5} cm² s⁻¹).

Fig. S15 The Koutecky–Levich plots of different catalysts: (a) BNFe - C, (b) BNFe - C - G1, (c) BNFe - C - G2, (d) BNFe - C - G3, (e) BNFe - C - G4, (f) NFe - C.

Fig. S16 The electron transfer number of different catalysts calculated from Koutecky–Levich plots.

Fig. S17 The SEM image of BNFe–C–G2 after stability testing.

Fig. S18 i–t technique: the stability and resistance to poisoning of BNFe–C–G1, BNFe–C–G2, BNFe–C–G3 and BNFe–C–G4.