## Facile fabrication of highly controllable gating systems based on the combination of inverse opal structure and dynamic covalent chemistry

Chen Wang, <sup>‡,a</sup> Haowei Yang, <sup>‡a,b</sup> Li Tian,<sup>a</sup> Shiqiang Wang,<sup>a</sup> Ning Gao,<sup>a</sup> Wanlin Zhang,<sup>a</sup> Peng Wang,<sup>a</sup> Xianpeng Yin,<sup>a</sup> and Guangtao Li<sup>\*,a</sup>

 <sup>a</sup> Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
E-mail: <u>lgt@mail.tsinghua.edu.cn</u>

<sup>b</sup> Department of Economic Operation, China National Tobacco Corporation, No. 55 South Yuetan Boulevard Xicheng District, Beijing 100045, P. R. China

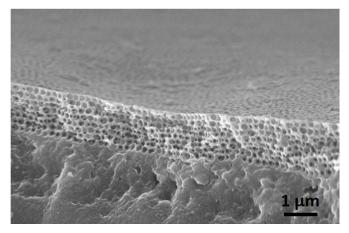
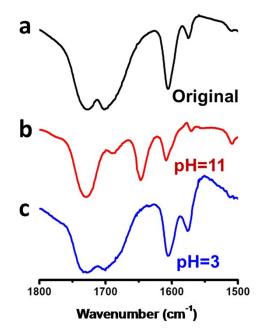
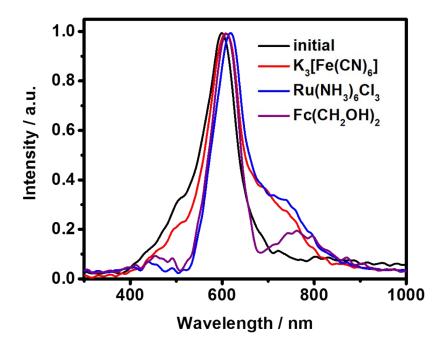





Figure S1. The cross-section SEM image of the inverse opal film.



**Figure S2.** The FTIR data of (a) blank benzaldehyde-containing film and corresponding films reacted with alkyl amines at (b) pH = 11 and (c) pH = 3.



**Figure S3.** Optical response of the negative charge controlled system upon transport of three redox probes  $Ru(NH_3)_6Cl_3$ ,  $K_3[Fe(CN)_6]$  and  $Fc(CH_2OH)_2$ , respectively.