Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Supplementary Information: On The Lubricity of Transition Metal Dichalcogenides: an *ab initio* Study

Benjamin J. Irving,¹* Paolo Nicolini,¹ Tomas Polcar^{1,2}

¹Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo Náměstí 13, 121 35 Prague, Czech Republic ²nCATS, FEE, University of Southampton, SO17 1BJ Southampton, United Kingdom

*To whom correspondence should be addressed; E-mail: irvinben@fel.cvut.cz

DATE

Figure 1: Plane-average charge density for the commensurate MoS_2 bilayer at [L] dy = 0.00 Å (global energy minimum) and [R] dy = 3.68 Å (global energy maximum).

Figure 2: Plane-average charge density for the commensurate $MoSe_2$ bilayer at [L] dy = 0.00 Å (global energy minimum) and [R] dy = 3.84 Å (global energy maximum).

Figure 3: Plane-average charge density for the commensurate $MoTe_2$ bilayer at [L] dy = 0.00 Å (global energy minimum) and [R] dy = 4.08 Å (global energy maximum).

Figure 4: Charge density difference isosurfaces (isolevel 6.5 x 10E-05 e/A³, positive = orange; negative = turquoise) for WSe₂ [L] at dy = 0.00 Å (global energy minimum) and [R] dy = 3.84 Å (global energy maximum)

Figure 5: Plane-average charge density for the commensurate WS_2 bilayer at [L] dy = 0.00 Å (global energy minimum) and [R] dy = 3.68 Å (global energy maximum).

Figure 6: Plane-average charge density for the commensurate WSe_2 bilayer at [L] dy = 0.00 Å (global energy minimum) and [R] dy = 3.84 Å (global energy maximum).

Figure 7: Plane-average charge density for the commensurate WTe_2 bilayer at [L] dy = 0.00 Å (global energy minimum) and [R] dy = 4.08 Å (global energy maximum).

Figure 8: Planar averaged charge density for MoS_2 bilayer, mismatch angle 17.9 degrees, global energy minimum (dy = 7.62 Å)

Figure 9: Planar averaged charge density for MoS_2 bilayer, mismatch angle 17.9 degrees, global energy maximum (dy = 0.00 Å)

Figure 10: Planar averaged charge density for MoS_2 bilayer, mismatch angle 92.2 degrees, global energy minimum (dy = 0.00 Å)

Figure 11: Planar averaged charge density for MoS_2 bilayer, mismatch angle 92.2 degrees, global energy maximum (dy = 13.20 Å)

Figure 12: Plot of the change in potential energy against the integral of the charge accumulated at the interface, for each MX_2 bilayer. The correlation between the two parameters for each bilayer stoichiometry emphasises the finding that greater negative charge accumulation at the bilayer interface is consistent with a lower energy configuration.