Supporting Information

Redox and pH dual sensitive bone targeting nanoparticle to treat

breast cancer bone metastases and inhibit bone resorption

Yi-puZhao¹[‡], Wei-liangYe¹[‡], Dao-zhou Liu¹, Han Cui¹, Ying Cheng¹, Miao Liu¹,

Bang-le Zhang¹, Qi-bing Mei², Si-yuan Zhou^{1, 2}*

Legends:

SFig.1 The synthetic route of ALN-HA-PASP conjugate.

SFig.2¹H NMR spectrum of HA-PASP conjugate (panel A) and ALN-HA-PASP conjugate (panel B).

SFig.3 The X-ray photoelectric spectroscopy (XPS) spectra of DOX@HA-PASP, DOX@ALN-HA-PASP and DOX@ALN-(HA-PASP)_{CL}.

SFig.4 Stability of DOX@ALN-HA-PASP and DOX@ALN-(HA-PASP)_{CL} in pH7.4 PBS medium (panel A) and in pH5.0 PBS medium (panel B) at room temperature.

SFig.5 The hemolytic rate of HA-PASP blank nanoparticle, ALN-HA-PASP blank nanoparticle and ALN-(HA-PASP)_{CL} blank nanoparticle on red blood cell. Data are mean±SD, n=5.

SFig.6 ALN release from ALN-HA-PASP and ALN-(HA-PASP)_{CL} in pH5.0 PBS medium. Data are mean±SD, n=5.

SFig.7 Cellular uptake of DOX@ALN-(HA-PASP)_{CL}, DOX@ALN-HA-PASP, DOX@HA-PASP and free DOX on MDA-MB-231 cells in pH7.4 detected by flow cytometry. Data are mean±SD, n=5. *P<0.05 vs DOX@HA-PASP.

SFig.8 The cytotoxicity of HA-PASP blank nanoparticle, ALN-HA-PASP blank nanoparticle and ALN-(HA-PASP)_{CL} blank nanoparticle on MDA-MB-231 cells in 24 h. Data are mean±SD, n=5.