Supporting Information

Transparent, flexible, and stretchable WS₂ based humidity sensors for electronic skin

Huayang Guo¹, Changyong Lan¹, Zhifei Zhou¹, Peihua Sun¹, Dapeng Wei², and Chun Li^{1*}

¹State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Information, University of Electronic Science and Technology of China No.4, Section 2, North Jianshe Road, Chengdu, 610054, China

²Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences Fangzheng Avenue, Shuitu Hi-tech Industrial Park, 400714, China

Figure S1. Schematic illustration of the humidity measurement system. In order to increase the RH level gradually, we first open valve V1 but close valve V2 so that the residual mositure gas can be exhausted by the pure N_2 gas. Then we close valve V1 but open valve V2. The RH level will increase because water molecules will get into the chamber with flowing N_2 gas. During the process, the RH level can be monitor by the standard hygrometer. For the time-dependent sensing performance test, we exposed the sensor to air by instantly opening the chamber lid and closing the lid following with rapid moisture injection. In this way, the humidity can be changed quickly.

^{*} Author to whom any correspondence should be addressed. E-mail: lichun@uestc.edu.cn

Figure S2. (a) Raman spectrum of the as-synthesized WS₂ film. WS₂ characteristic Raman peaks of the E^{1}_{2g} and A_{1g} phonon modes locates at 353.3 and 419.7 cm⁻¹, respectively. The difference between the two modes is about 66.4 cm⁻¹, further confirming multilayer feature of the as-synthesized WS₂. (b) XPS survey spectrum of WS₂ sample. Full scan spectrum shows that except the main peaks of W and S, Si signal from the substrate was also observed, suggesting the WS₂ film is thin enough to allow escape of photoelectrons originating from substrate. (c) XPS scan for W. The detailed W 4*f* scan reveals two peaks, attributed to doublet W 4*f*_{7/2} and W 4*f*_{5/2}, are located at 32.98 and 35.13 eV, respectively. (d) XPS scan for S. The detailed S 2*p* scan also shows two peaks, corresponding to S 2*p*_{3/2} and S 2*p*_{1/2} orbital of divalent sulfide ions, are observed at 162.6 and 163.8 eV, respectively.

Figure S3. Structural characterization and sensing performance of the CVD-grown well-crystallized WS_2 . (a) HRTEM of the well-crystallized WS_2 . Lattice fringes can be clearly seen. (b) SAED of the as-grown WS_2 sample, which suggest the high quality of the WS_2 sample. (c) Responses of the well-crystallized WS_2 and polycrystal WS_2 in different relative humidity, respectively. Top inset: magnified curve of the well-crystallized WS_2 . Bottom inset: photo image of the as-fabricated sensor. It is obvious that the well-crystallized WS_2 has poor humidity sensing performance compared with the sulfurization-grown polycrystalline WS_2 sample. (d) Dynamic response of the well-crystallized WS_2 to humid gas between 35% and 40% RH. Red dash line indicates the trend of sensor's response to humid gas. The signals are mostly submerged by noise.

Figure S4. Comparision of humidity sensing performance between the fabricated WS_2 gas sensor and a comercial available humidity sensor (AOSONG Mod. HR202L). (a) Photo image and (b) humid gas response of a WS_2 humidity sensor and a commercial humidity sensor contacted to a testing stage.

Figure S5. Comparision of the device sensing response to different gases. Clearly, the WS_2 film shows current increase response to water mositure, while it shows current decrease response to ethanoal and acetone, and no observable current response to dry dair.

Figure S6. Raman characterization of the as-fabricated transparent humidity sensor with graphene IDEs attached onto WS₂ film. (a) Raman spectrum of the graphene IDE/WS₂ film. The black line belongs to the area with graphene attached onto WS₂ thin film. The red line belongs to the WS₂ area only. (b) Enlarged spectrum of high wavenumber region shown in (a). The G band and 2D band of graphene can be clearly seen. (c) Enlarged spectrum of low wavenumber region shown in (a). Because of the graphene attached onto WS₂ film, the intensity of E_{2g}^{1} and A_{1g} band of the WS₂ with graphene attaching is slightly small than that of pure WS₂ film only. (d) Raman mapping of the device. The mapping is formed by recording the intensity of the E_{2g}^{1} band of WS₂. Clearly, the region with graphene IDEs covering shows lower Raman intensity than that of WS₂ film without graphene covering.

Material	Sensitivity	t _{res}	t _{rec}	ΔR
Graphene ¹	$S(50\%) = \left \frac{\Delta R}{R_0}\right \approx 0.9\%$	NA	NA	NA
GO ²	NA	30 ms	30 ms	\searrow
MoS ₂ /GO ³	$S(85\%) = \frac{I_{humidity}}{I_{baseline}} = 1600$	43 s	37 s	7
MoS_2^4	$S(84\%) = \frac{R(84\%)}{R(11\%)} \approx 7.5$	>500 s	>2000 s	1
MoS_2^5	$S(60\%) = \frac{R_{60\%} - R_0}{R_0} \times 100\% \approx 130\%$	9 s	17 s	7
MoS_2^6	$S(60\%) = \frac{R_H}{R_D} \approx 3$	9 s	17 s	1
MoS_2^7	$S(95\%) = \frac{R_{RH}}{R_{dry}} \approx 14$	NA	NA	1
VS_2^8	$S = \frac{R_{RH}}{R_{dry}} = 30$	30-40 s	12-50 s	7
black phosphorus ⁹	$S(97\%) = \frac{R_{11\%} - R_{RH}}{R_{RH}} \times 100\% \approx 521\%$	101 s	26 s	7
WS ₂ ¹⁰	$S(80\%) = \frac{I_{80\%}}{I_{25\%}} = 37.5$	13 s	17 s	\mathbf{Y}
WS_2^{11}	$S(97.3\%) = \frac{R_{11\%} - R_{97.3\%}}{R_{97.3\%}} \times 100\% \approx 469\%$	12 s	13 s	\mathbf{Y}
WS ₂ (our work)	$S(90\%) = \frac{R_{20\%}}{R_{90\%}} \approx 2357$	5s	6s	7

Table S1. Sensing performance of the reported humidity sensors based on 2D materials.

Refrences

- 1. Y. H. Kim, S. J. Kim, Y.-J. Kim, Y.-S. Shim, S. Y. Kim, B. H. Hong and H. W. Jang, *ACS Nano*, 2015, **9**, 10453-10460.
- S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja and T. Ryhanen, ACS Nano, 2013, 7, 11166-11173.
- 3. D. Burman, R. Ghosh, S. Santra and P. Guha, *RSC Adv.*, 2016.
- 4. D. J. Late, Y. K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid and C. N. Rao, *ACS Nano*, 2013, 7, 4879-4891.
- 5. S.-L. Zhang, H. Jung, J.-S. Huh, J.-B. Yu and W.-C. Yang, J. Nanosci. Nanotechnol., 2014, 14, 8518-8522.
- 6. S.-L. Zhang, H.-H. Choi, H.-Y. Yue and W.-C. Yang, *Curr. Appl. Phys.*, 2014, 14, 264-268.

- C. Ahn, J. Lee, H. U. Kim, H. Bark, M. Jeon, G. H. Ryu, Z. Lee, G. Y. Yeom, K. Kim and J. Jung, *Adv. Mater.*, 2015, 27, 5223-5229.
- 8. J. Feng, L. Peng, C. Wu, X. Sun, S. Hu, C. Lin, J. Dai, J. Yang and Y. Xie, *Adv. Mater.*, 2012, 24, 1969-1974.
- 9. M. B. Erande, M. S. Pawar and D. J. Late, ACS Appl. Mat. Interfaces, 2016, 8, 11548-11556.
- 10. R. K. Jha and P. K. Guha, *Nanotechnology*, 2016, **27**, 475503.
- 11. A. S. Pawbake, R. G. Waykar, D. J. Late and S. R. Jadkar, ACS Appl. Mat. Interfaces, 2016, 8, 3359-3365.