Lasing behavior of surface functionalized carbon quantum dots/RhB

composite

(Supporting Information)

Ashish Yadav^{a§}, Liang Bai^{a§}, Yanmei Yang^a, Juan Liu^a, Ajeet Kaushik^b Gary J. Cheng^{c,d}, Lin Jiang^{a*}, Lifeng Chi^{a*} Zhenhui Kang^{a*}

Fig. S1 Sketch of the experimental set-up used in laser emission studies. HW is a half wave plate, P a Glan-Taylor polarizer, M a mirror, SH a frequency doubling crystal, DM a dichroic mirror, N a 532 nm-notch filter connected, by means of a lens-coupled optical fiber-bundle, to the spectrometer for the luminescence detection.

Fig. S2 TEM images of a) OH-CQDs and b) NH₂-CQDs.

Fig. S3. Particle-size histogram of a) OH-CQDs, b) NH₂-CQDs, c) PO₄-CQDs.

Fig. S4 The Energy Dispersive X-ray Spectroscopy (EDS) analysis of NH₂-CQDs, PO₄-CQDs and OH-CQDs.

Fig. S4. Partical-size histogram of a) OH-CQDs, b) NH_2 -CQDs, c) PO₄-CQDs. Fluorescence spectra of different amount of 0.5 mg/mL RhB solution in OH-CQDs solution and b) in NH_2 -CQDs solution with the excitation wavelength of 365 nm.

Fig. S5. The relationship of fluorescence intensity and linewidth of b) PO₄-CQDs/RhB composite with the input energy of 1.42, 1.52 and 1.68 mJ

Fig. S6. Scheme of interaction between RhB dye molecules and CQDs.