Supporting Information For

Highly efficient oxygen evolution from CoS₂/CNTs nanocomposite via one-step electrochemical deposition and dissolution method

Jizhang Yang^a, Zhi Yang^{a*}, Lu Hua Li^b, Qiran Cai^b, Huagui Nie^a, Mengzhan Ge^a, Xi'an Chen^a, Ying Chen^b, Shaoming Huang^{a, c *}

Figure S1. Electrodeposition cyclic voltammetry (CVs) of CoS_2 . (A) 0.4mMCoCl₂ containing 0.06M thiourea electrolyte on CNT; (B) Deposited on the various substrates: Bare Electrode (Bare glass carbon electrode, black), CNT (red: TU+KCl electrolyte, blue: TU+CoCl₂ electrolyte). scan rate 30 mV s⁻¹..

Table S1	Comparison	of catalytic	parameters	of different	OER catalysts.

Samples	Onset Potential (V vs. RHE, iR- corrected)	η(mV) @j=10mAcm ⁻²	η(mV) @j=20mAcm ⁻²
Raw CNT	1.57	-	-
Bare elec.+60	1.46	338	375
IrO ₂	1.43	321	371
CNT-CoS ₂ -20	1.42	335	374
CNT-CoS ₂ -40	1.43	338	376
CNT-CoS ₂ -60	1.33	290	321
CNT-CoS ₂ -80	1.34	311	350
CNT-CoS ₂ -120	1.52	482	_

Figure S2. TEM images of (A-D) CNT-CoS₂-60 and (E) STEM and corresponding element mapping. (F) EDS of CNT-CoS₂-60.

Figure S3. (A) XPS spectra survey of the CNT-CoS₂-60; (B) S 2p region.

Figure S4. Co 2p spectra in CNT-CoS₂.

Figure S5. (A)O 1s region; (B) NEXAFS characterization of O K-edge.

Figure S6 Contact angle of different electrodes: (A) GCE; (B) Raw CNT; (C) CNT/CoS₂; (D) CNT-CoS₂-60.

Figure S7. (A) iR-corrected Polarization curves for various CNT-CoS₂. (B) iR-corrected Tafel Plot of (A).

Catalysts	Electrolyte	Onset	η(mV)	Tafel	Ref.
	8	η(mv)	@j=10mAcm ⁻²	slope (mvdec ⁻¹)	
CNT-CoS ₂ -60	0.1M KOH	100	290	255	This work
Ni ₂ Co ₁ /Ni ₂ Co ₁ O _x	0.1M KOH	320	380	105	Adv. Funct. Mater. 2016,26,
	1M KOH	270	320	42	5998–6004.
NiCoP/rGO	1M KOH	251	270	65.7	Adv. Funct. Mater. 2016, 26, 6785–679.
NiCo ₂ S ₄	1M KOH	240	260	40.1	Adv. Funct. Mater. 2016, 26, 4661-4672
Co ₃ S ₄ nanosheet	0.1MKOH	280	355	48	Angew. Chem. Int. Ed. 2015, 54, 1-6
NiCo ₂ S ₄ @N/S-rGO	0.1M KOH	_	470		ACS Appl. Mater. Interfaces 2013, 5,5002.
CoS ₂ (400)/N,S-GO	0.1M KOH	220	380	75	ACS Catal. 2015, 5, 3625–3637
Co ₉ S ₈ @MoS ₂ /CNF	1 M KOH	350	430	61	Adv. Mater., 2015, 27, 4752-4759.
Co ₂ B-500	0.1M KOH	250	380	45	Adv. Energy Mater. 2016, 1502313
Co-Bi NS/G	1M KOH	235	290	53	Angew. Chem. Int. Ed. 2016, 55, 1–6
NiCo ₂ O ₄	1М КОН	230	290	53	Angew. Chem. Int. Ed. 2016, 55, 1–6
Co ₃ O ₄ /NiCo ₂ O ₄	1M KOH	300	340	88	J. Am. Chem. Soc. 2015, 137, 5590
Co-CoOx@CN	1M KOH	270	260		J. Am. Chem. Soc. 2015, 137, 2688
Co-P film	1М КОН	345	345	47	Angew. Chem. Int. Ed. 2015, 54, 6251.
NiCo LDHs	1M KOH	312	367	40	Nano Lett. 2015, 15, 1421.
MnCo ₃ O ₄	0.1M KOH	290	510	55	Adv.Funct.Mater. 2015,25,393- 399
Zn-Co-LDH NS	0.1M KOH	230	480	101	J. Mater. Chem. A 2015, 3, 6878.
CeO ₂ /CoSe ₂	0.1M KOH	160	288	44	Small 2015, 11, 182.
$ZnxCo_{3-x}O4-3:1$	1M KOH	290	320	51	Chem.Mater.2014, 26, 1889.
LiCoO ₂	0.1M KOH	330		52	Nat.Commun.2014, 5, 3949.
Fe-Co ₃ O ₄	0.1M KOH		486		Chem. Mater. 2014, 26, 3162.
CoMn LDH	1M KOH	290	325	43	J. Am. Chem. Soc. 2014, 136, 16481.
CoCo-NS	1M KOH	300	353	45	Nat. Commun. 2014, 5, 4477.
NiCo-NS		280	334	41	
NG-CoSe ₂	0.1M KOH	293	366	40	ACS Nano 2014, 8, 3970.
Zn-Co-LDH/CNT	0.1M KOH	340	548		J. Am. Chem. Soc. 2013, 135, 17242.
NG-NiCo	0.1M KOH	84		614	Angew. Chem. Int. Ed. 2013, 52, 13567.
Co ₃ O ₄ -CuCo ₂ O ₄	0.1M KOH		498	_	Chem.Mater.2013, 25, 4926.
PNG-NiCo ₂ O ₄	0.1M KOH	310	349	156	ACS Nano 2013, 7, 10190.
Co(PO ₃) ₄	PBS pH=6.4	313	405	74.1	Adv. Funct. Mater. 2013, 23, 227.
α-FeCoNiOx	0.1M KOH	190	285	31±3	Science 2013,340,60

Table S2 Comparison of OER	performance in alkaline	e medium for CNT-	-CoS-60 with other
OER electro-catalysts.			

Mn ₃ o ₄ /CoSe ₂	0.1M KOH	—	450	49	J. Am. Chem. Soc. 2012,134,2930.
CoO(OH)	0.1M KOH	440	650	—	Nat. Mater.2012,11,550
Co ₃ O ₄ /SWNT	0.1M KOH	240	580	104	Nano.Res.2012,5,521
CoOx/Au	0.1M KOH	270	551	_	J.Am.Chem.Soc.2011, 133, 5587.
Co ₃ O ₄ /graphene	0.1M KOH	300	360	67	Nat.Mater.2011,10,780
NixCo _{3-x} O ₄	1M KOH		420	59	Adv. Mater. 2010, 22, 1926.
Co ₃ O ₄	1M KOH		534	$\approx 47 \pm 7$	J.Phys.Chem. C 2009, 113, 15068.

Figure S8. (A) Electrochemical impedance spectroscopy (EIS) of different cycles, condition: 0.01MKOH. (B) Equivalent circuit models OH-/O₂ of CNT-CoS₂-60, (C) The measured and fitted curves of CNT-CoS₂-60.

Samples	R_s/Ω	R_{ct}/Ω	CPE/µMho	Q∕µMho
CNT-CoS ₂ -20	351	31.3	4.64	310
CNT-CoS ₂ -40	351	32.7	5.66	294
CNT-CoS₂-60	334	26.4	12.1	315
CNT-CoS ₂ -80	370	46.7	7.63	216
CNT-CoS ₂ -120	361	49.9	5.47	319

 Table S3 Electrochemical impedance spectroscopy (EIS) parameters of OER catalysts.

Figure S9. SEM images: (A) CNT-CoS₂-20; (B) CNT-CoS₂-40; (C) CNT-CoS₂-60; (D) CNT-CoS₂-80; (E) CNT-CoS₂-100 and (F) CNT-CoS₂-120.

Figure S10. TEM images of different magnification: (A) CNT-CoS₂-40; (B) CNT-CoS₂-60; (C) CNT-CoS₂-80; (D) CNT-CoS₂-120.

Figure S11. OER iR-corrected polarization plots of IrO₂ in 0.1MKOH with KSCN.