Supporting Information

Colloidal synthesis of urchin-like Fe doped NiSe₂ for efficient

oxygen evolution

Yeshuang Du,^a Gongzhen Cheng,^a Wei Luo^{a,b*}

	Table S1 Composition of NiFeSe catalysts							
Catalysts	1	2	3	4				
Precursor ratio Ni:Fe:Se	NiFe _{0.23} Se ₂	NiFe _{0.53} Se ₂	NiFe _{0.75} Se ₂	NiFeSe ₂				
ICP result	$Ni_{1.16}Fe_{0.27}Se_2$	$Ni_{1.12}Fe_{0.49}Se_2$	$Ni_{1.06}Fe_{0.58}Se_2$	$Ni_{1.02}Fe_{0.88}Se_2$				

Catalyst	electrolyte	support	loading	J	Overpotential	ref
			(mg/cm^2)	(mA/cm ²)	(mV)	
Ni ₃ Se ₂	0.3 M KOH	GC	0.217	10	290	1
$Co_{0.13}Ni_{0.87}Se_2$	1 M KOH	Ti	1.67	100	320	2
NiSe ₂	1 M KOH	Ti	2.5	20	295	3
NiSe ₂	1 M KOH	GC	1	10	250	4
FeNiSe	1 M KOH	FeNi foam	4.8	100	264	5
NiSe	1 M KOH	Ni foam	2.8	20	270	6
NiSe	1 M KOH	Ni foam		10	320	7
Ni ₃ Se ₂	1 M KOH	CF	3	50	340	8
Ni ₃ Se ₂	1 M KOH	Ni foam	8.87	20	242	9
(Ni, Co) _{0.85} Se	1 M KOH	carbon	5	10	255	10
		cloth				
(Ni,Co) _{0.85} Se @ NiCo	1 M KOH	carbon	6	10	216	10
LDH		cloth				
NiSe ₂	1 M KOH	Ni foam		50	350	11
$Ni_{0.5}Fe_{0.5}Se_2$	1 M KOH	CFC		50	350	12
CoSe	1 M KOH	GC	0.28	10	295	13
Co ₇ Se ₈	1 M KOH	GC		10	290	14
NiCo-selenide	0.1 M KOH	CFP	0.2	10	393	15
CoSe	1 M KOH	Ti	3.8	10	292	16
CoSe	0.1 M KOH	NG	0.2	10	366	17
Co _{0.85} Se/NiFe-LDH	1 M KOH	EG		150	270	18
CoSe ₂	0.1 M KOH	GC	0.142	10	320	19

Table S2 Com	narison (of OFR	catalytic	nerformances	with re	norted meta	l selenides
Table SZ Com	Janson (JI UEK		periorinances	withic	porteu meta	scientues

CoOx–CoSe	1 M KOH	Ni foam	1.7	100	300	20
$CeO_2/CoSe_2$	0.1 M KOH	GC	0.2	10	288	21
$Ni_{0.75}Fe_{0.25}Se_2$	1 M KOH	CFC	1.5	100	277	22
NixFe _{1-x} Se ₂ -DO	1 M KOH	Ni foam		10	195	23
Ni _{1.12} Fe _{0.49} Se ₂	1 M KOH	XC-72	0.45	10	227	this
						work

Figure S1. XRD patterns of $Ni_{1.12}Fe_{0.49}Se_2$ before (a) and after (b) OER stability test.

Figure S2. TEM image of $Ni_{1.12}Fe_{0.49}Se_2\!/XC\text{-}72$ after OER stability test.

Figure S3. XPS spectra of Ni 2p (a), Fe 2p (b), Se 3d (c) in Ni_{1.12}Fe_{0.49}e₂ catalyst before (i) and after (ii) OER stability test.

References

- [1] A. T. Swesi, J. Masud and M. Nath, Energy Environ. Sci., 2016, 9, 1771.
- [2] T. Liu, A. M. Asiri and X. Sun, Nanoscale, 2016, 8, 3911.
- [3] Z. Pu, Y. Luo, A. M. Asiri and X. Sun, ACS Appl. Mater. Interfaces, 2016, 8, 4718.
- [4] I. H. Kwak, H. S. Im, D. M. Jang, Y. W. Kim, K. Park, Y. R. Lim, E. H. Cha, and J. Park, ACS Appl. Mater. Interfaces, 2016, 8, 5327.
- [5] C. Tang, A. M. Asiri and X. Sun, Chem. Commun., 2016, 52, 4529.
- [6] C. Tang, N. Cheng, Z. Pu, W. Xing, and X. Sun, Angew. Chem. Int. Ed., 2015, 54, 9351.
- [7] K. Xu, H. Ding, K. Jia, X. Lu, P. Chen, T. Zhou, H. Cheng, S. Liu, C. Wu, and Y. Xie, Angew. Chem. Int. Ed., 2016, 55, 1710.
- [8] J. Shi, J. Hu, Y. Luo, X. Sun and A. M. Asiri, Catal. Sci. Technol., 2015, 5, 4954.
- [9] R. Xu, R. Wu, Y. Shi, J. Zhang and B. Zhang, Nano Energy, 2016, 24, 103.
- [10] C. Xia, Q. Jiang, C. Zhao, M. N. Hedhili, and H. N. Alshareef, Adv. Mater., 2016, 28, 77.
- [11] X. Li, G.-Q. Han, Y.-R. Liu, B. Dong, X. Shang, W.-H. Hu, Y.-M. Chai, Y.-Q. Liu and C.-G. Liu, *Electrochimica Acta*, 2016, 205, 77.
- [12] J.-Q. Chi, X. Shang, F. Liang, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai and C.-G. Liu, *Appl. Surf. Sci.*, 2017, 401, 17.
- [13] M. Liao, G. Zeng, T. Luo, Z. Jin, Y. Wang, X. Kou and D. Xiao, *Electrochimica Acta*, 2016, 194, 59.
- [14] J. Masud, A. T. Swesi, W. P. R. Liyanage, and M. Nath, ACS Appl. Mater. Interfaces, 2016, 8, 17292.
- [15] X. Zhao, Y. Yang, Y. Li, X. Cui, Y. Zhang and P. Xiao, J Mater Sci., 2016, 51, 3724.
- [16] T. Liu, Q. Liu, A. M. Asiri, Y. Luo and X. Sun, Chem. Commun., 2015, 51, 16683.
- [17] M.-R. Gao, X. Cao, Q. Gao, Y.-F. Xu, Y.-R. Zheng, J. Jiang, and S.-H. Yu, ACS Nano, 2014, 4, 3970.
- [18] Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang and X. Feng, Energy Environ. Sci., 2016, 9, 478.
- [19] Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S. Wei, B. Ye and Y. Xie, J. Am. Chem. Soc., 2014, 136, 15670.
- [20] X. Xu, P. Du, Z. Chen and M. Huang, J. Mater. Chem. A, 2016, 4, 10933.
- [21] Y.-R. Zheng, M.-R. Gao, Q. Gao, H.-H. Li, J. Xu, Z.-Y. Wu and S.-H. Yu, Small, 2015, 11, 182.
- [22] Z. Wang, J. Li, X. Tian, X. Wang, Y. Yu, K. A. Owusu, L. He and L. Mai, ACS Appl. Mater. Interfaces, 2016, 8, 19386.
- [23] X. Xu, F. Song and X. Hu, Nat. Commun., 7:12324 doi: 10.1038/ncomms12324.