Supplementary Information

Depth-profiling of Yb³⁺ sensitizer ions in NaYF₄ upconversion nanoparticles

Xiaoxue Xu‡, £,*, Christian Clarke£, Chenshuo Ma§,‡, Gilberto Casillas¤, Minakshi Das‡, Ming Guan£, Deming Liu£, Li Wang¤, Anton Tadich∞, Yi Du¤, Cuong Ton-That£,*, and Dayong Jin£,†

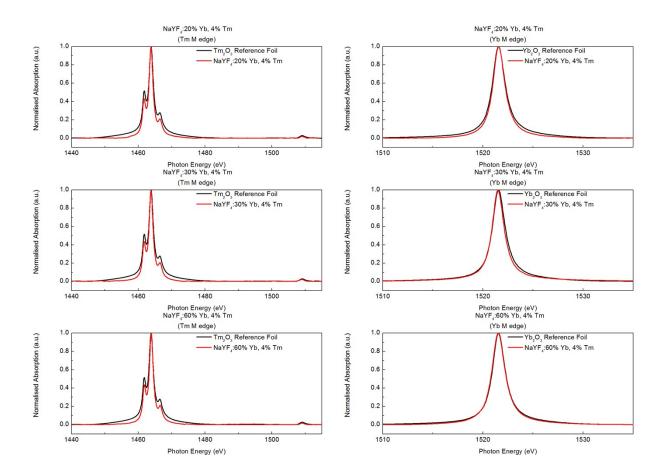
[‡] Department of Chemistry and Biomolecular Science, Macquarie University, Sydney, NSW, 2109, Australia;

[£] Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia;

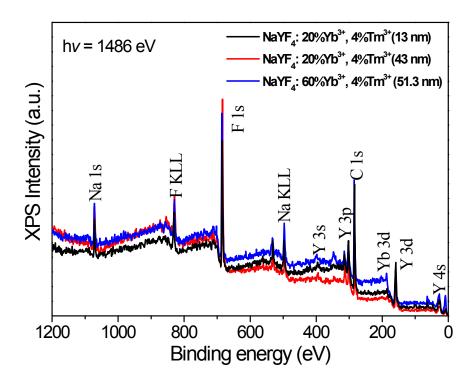
¹²Institute for Superconducting and Electronic Materials, Innovation Campus, University of Wollongong, NSW, 2522, Australia

§ Department of Engineering, Macquarie University, Sydney, NSW, 2109, Australia;

† ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, NSW, 2007, Australia;


[∞] Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia

Corresponding Authors


Xiaoxue.xu@mq.edu.au

Cuong.Ton-That@uts.edu.au

SUPPORTING RESULTS:

Figure S1. Normalised M-edge NEXAFS spectra of three UCNPs samples plotted together with respective Tm₂O₃ and Yb₂O₃ reference foils, confirming both Yb and Tm ions in the 3+ valence state, which is in the same state as that of host Y ions.

Figure S2. XPS survey spectra for the NaYF₄ UCNPs acquired at the photon energy of 1486 eV. All the peaks can be identified to the elements in the UCNP.

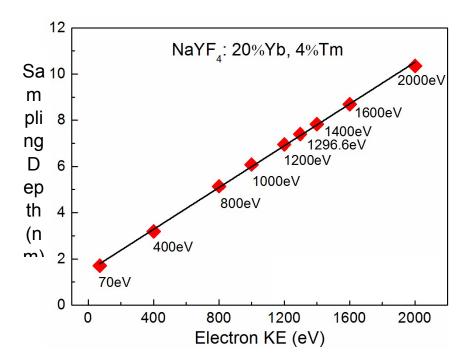


Figure S3. XPS sampling depth in NaYF₄ as a function of photoelectron kinetic energy (KE).

Table S1: Elemental composition of NaYF $_4$ UCNPs doped with Yb and Tm obtained from ICP-MS analysis.

Size	Designed Composition			Measured Composition		
(nm)	Y ³⁺	Yb ³⁺	Tm ³⁺	Y ³⁺	Yb ³⁺	Tm ³⁺
13.0				76.03%	20.21%	3.75%
26.2				75.52%	20.94%	3.30%
31.1	76%	20%		77.87%	18.23%	3.54%
36.6			4%	78.88%	17.42%	3.90%
43.0			7/0	79.62%	17.05%	3.70%
27.4	66%	30%		68.89%	27.60%	3.51%
35.9	51%	45%		53.05%	43.22%	3.74%
51.3	36%	60%		33.48%	63.24%	3.28%