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Supporting Information

Section 1. Dissipative Particle Dynamics (DPD) method

DPD is a bead-based simulation technique where the motion of beads is 

governed by the Newton’s law of motion. The pairwise force between the beads is 

made up of three individual forces, namely the conservative force (FC), the dissipative 

force (FD) and the random force (FR). Those forces can be characterized as

C C( )ij ij ij ija rF e

2D D ( )( )ij ij ij ij ijr  F e v e

R R 1/2( )ij ij ij ijr t   F e

The conservative force acts as the soft repulsion and also identifies the beads with the 

conservative parameter aij which differs for different particle species. Without loss of 

generality, aii, which acts between the same liquid beads, is set as 25, and asf between 

the solid and fluid beads is varied to denote different wettability of the wall. The 

dissipative force and the random force are coupled together to ensure a canonical 

equilibrium distribution, serving as a thermostat for the system1. All of the three 

forces are characterized by weigh functions and will vanish in a distance larger than 

the cut-off radius rc. All the parameters in a DPD system are scaled by the assemble 

of the cut-off radius rc, bead mass m and thermodynamic energy kBT. For instance, the 

length, force and time are scaled by rc, kBT/rc and (mrc
2/kBT)1/2, respectively. 
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Section 2. The simulation system

As shown in Figure S1a, the tube is connected with two reservoirs, which can 

provide a stable pressure for it. At the beginning of the simulation, no driving force is 

applied, and the fluid particles diffuse freely for 1×104 time steps. The equilibrated 

distribution of the particles is saved and the actual density in each tube is determined. 

Then, we remove the reservoirs and take the tube and the fluids inside as the initial 

conditions for the following simulation (see Figure S1b). A body force fx in the 

direction of the x-axis is applied on each fluid particle to simulate the pressure 

gradient. The trajectories of 1×106 time steps are used for data analysis.

(a) (b)

Figure S1. Scheme of the simulation system: (a) The initial system with 

reservoirs; (b) The subsequent system without reservoirs.

The repulsive parameter between the solid walls and fluid, asf, reflects the tube 

wettability. A brief simulation is conducted to find the relation between asf and the 

contact angel of the surface. For the DPD method is not applicable for the systems 

with different densities, we use another liquid phase to mimic the ambient air as 

proposed by Kong et al2. In such method, the conservative parameter between the two 
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fluids are supposed to be strong (50 in this work) to avoid mixing and the 

conservative parameter between the ambient phase and the solid is set as 25. In this 

way, the liquid ambient phase can mimic an air phase in this work. With the results 

shown in Figure S2 we choose the values of 25 and 35 to denote the hydrophilic and 

hydrophobic tubes. 
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Figure S2. Variation of the contact angle with the repulsive parameter (asf) 

obtained from DPD simulation. The inserted figure shows the screenshot of the 

simulation with asf=25 and a contact angle of about 90°

Section 3. Appendix to the simulation

The linear relation between the flow rate and the driving force has been shown 

by tests in two individual tubes, namely the tubes with R=3, asf=25 and R=3, asf=35. 

As shown in Figure S3, the Darcy’s law is satisfied with the driving forces we employ 

in this work.
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Figure S3. Variation of the flux (beads number/area/time) with the driving 

acceleration. 

In Figure S4, the density profiles within the same tube (R=4, asf=35) in different 

flow states are displayed. The profiles, no matter in static or dynamic state with 

various driving forces, all coincide with each other. Therefore, we draw a conclusion 

that in the velocity scope involved in this work (Re<10), the density profile 

exclusively depends on the tube, and is independent on the flow state. 
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Figure S4. Density profiles within the tube of R=5 and asf=35 under different 
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driving forces.

Figure S5 shows the velocity profiles in nanotubes. The profiles exhibit various 

characters with different tube sizes. In Figure S5a, the radius is 23σD and the 

inhomogeneous region can be approximately ignored. However, the slip at the solid-

liquid interface is obvious. The radius in Figure S5b is 8σD, and the inhomogeneous 

region can be clearly seen. The Hagen-Poiseuille velocity profile is also depicted in 

this figure (the red spots). Both of the profiles start at zero at the walls while their 

summit velocities are far apart. So we can draw a conclusion that the inhomogeneous 

boundary evidently enhances the general velocity in nanotubes. When the radius falls 

to less than 3σD in Figure S5c, the plug-flow with a uniform velocity takes place. In 

this case, the inhomogeneous region overlaps and leads to an ultra-high viscosity in 

the central area.
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Figure S5. Velocity profiles in nanotubes with different radiuses.

   To certify the DPD results, we make a comparison with the Lennard-Jones 

fluid in previous works3 (Figure S6), where the nonequilibrium molecular 

dynamics (NEMD) method is employed. The quantitative differences lie in the 

structural variance (it is the nano-slit in Ref.2) and interactional difference. It 

denotes that the DPD method is adequate to show the inhomogeneity of fluid even 

though some details on electronic level have been ignored. 
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Figure S6. Comparison of normalized density and viscosity profiles by DPD and 

NEMD simulation in nanotubes. 

Section 4. The details in derivation 

From the stokes equation with viscosity and density distribution, 

1 d d( ) ( )
d d

x
x

vr r r f
r r r

     
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Within the inhomogeneous region, it is assumed that the fluid velocity at the fluid-

solid boundary equals zero. And the fluid velocity at the inhomogeneous-bulk 

interface is vs. One can get the velocity distribution function in the inhomogeneous 

region as 

i
s

d
( ) d ( ) d( )( ) d dd( ) ( )

( )
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r r f r r r f rr rv r v r rrr r r r

r r




 
 






                   

  


where r equals zero at the center and equals R at the solid face. In the bulk region, 

however, one has μ(r) = μb and ρ(r) = ρb. With vs as the boundary condition, the 

velocity distribution gives
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b

( )
4

x
x
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
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vs can be determined by the matching of the inhomogeneous and the bulk regions as

s
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By integrating the velocity expressions on the cross section, one can get the 

penetration rate as
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As the apparent slip emerges as the extrapolation of the bulk velocity profile at 

the boundary, it is defined as 

b
b
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according to the Navier’s boundary condition. Then the expression of the slip length 

can be given as
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It is revealed that the slip length is related to both the density and viscosity 

distributions in the inhomogeneous region. Accordingly, the expression can be 

simplified as 

2
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The effective slip is calculated from the Navier’s equation
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Thus the effective slip length can be given as

4 ( 1)R  

where ε is the flow enhancement. The effective slip length is the surface slip length in 

need to produce the particular enhancement when the velocity profile is assumed to be 

a smooth parabola. The apparent slip, on the other hand, is based on the actual 

velocity profiles. When the inhomogeneity cannot be ignored and the velocity profile 

is severely distorted, there can be evident differences between those two kinds of 

slippage. And as the tube radius gets larger, the two slip lengths get close to each 

other. 

Section 5. Converting DPD units to real scale  

When the DPD beads serve as simple liquid model that can be considered as 

individual water molecules with a number density of 3, the effective diameter of one 

molecule is 0.86rC, which can be obtained by the radial distribution function. In real 

life the effective diameter of water molecules in normal state is 0.4 nm. Hence, we 

have

 10
C 5 10 mr  

According to Stokes-Einstein equation, the diffusion constant of water molecules is
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 
19

b C

5 10 m
3

Bk TD
r


 

which works out at D≈1×10-9m2 s-1. In DPD simulation, the statistical result of the 

diffusion constant by Green-Kubo theory is DDPD≈0.3 rC
2 τ-1. Equating the diffusion 

constants in the simulation and in the physical system, we get

 116 10 s  

Therefore the velocity scale is 

1
C / 10 m sr     

Thus the order of magnitude of the velocity results in this work is about 1×10-1 m/s.
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