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Polymer characterization. The steady state viscosity of the PEG melts was measured at 298 K using an 

Anton Paar MCR 302 rheometer with cup and bob geometry. During each measurement, the sample was pre-
shear at 1 1/s during 5 min, followed by a shear rate ramp from 10 to 1000 s-1 to measure the viscosity. Figure 
SI-1 shows the viscosity of each polymer as a function of shear rate and at different temperatures. The results 
indicate that the solution prepared with PEG 2 kDa to PEG 17 kDa behave as Newtonian fluids in the 
experimental shear rate range. At high concentration, samples prepared with PEG 197 kDa and PEG 363 kDa 
exhibit a shear thinning behavior at high shear rates. It is important to remark that, even though the solutions 
prepared with high molecular PEGs (higher than 100 kDa and above the overlap concentration) exhibited a 
shear-thinning behavior, the MNPs in the polymer solutions behave as in a Newtonian fluid since the DMS 
spectra continue to follow the Debye model (see Figure SI-1e and Figure SI-1f). 

 

 
Figure SI-1. Viscosity of PEG solutions as a function of shear rate at 298 K measured in a rheometer. 
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The overlap concentration for each polymer was also estimated from measurements of the intrinsic viscosity 
of the solutions, extrapolated to infinite dilution. Figure SI-2 shows these measurements, along with fits used to 
obtain the y-axis intercept, which is the inverse of the overlap concentration. The results are tabulated in Table 
SI-1, which also includes the theoretical values obtained using the equation 3* 3 4n g Ac M R Nπ= , as well as the 
relative error between the experimental and theoretical values. The relative error between the theoretical and 
experimental value is relatively small and as such this value was used throughout the manuscript. 

 

    
Figure SI-2. ( )ln ηrel c vs c to calculate the intrinsic viscosity of polymer solutions prepared with PEG polymer 
a) 2, 4, 7 and 17, and b) 197 and 363. 
 

Table SI-1. Intrinsic viscosity and overlap concentration calculations for 
PEG polymer solutions.  

PEG Intercept 
[mL/g] 

Overlap concentration [g/mL] % Error Measured Theoretical 
2 6.96181 0.1436 0.1498 4.2% 
4 11.5665 0.0865 0.0948 9.2% 
7 18.4563 0.0542 0.0570 5.0% 
17 31.8898 0.0314 0.0293 6.9% 
197 241.751 0.0040 0.0046 14.0% 
363 382.817 0.0026 0.0029 10.9% 
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Determination of overlap regime. Polymer solutions in the semidilute regime can be classified as being in 
the semidilute unentangled and semidilute entangled regime depending on their concentration.1 The 

entanglement volume fraction was estimated using     ce =φe M0 / b3N A , with 
    
φe ≈ Ne 1( ) / N⎡

⎣⎢
⎤
⎦⎥
3/4

 (this is the 

expression for θ-solvents,1 but the numerical results are very similar for athermal solvent), where 
   
Ne 1( ) is the 

number of Kuhn monomers in an entanglement strand in the melt,  N  is the number of Kuhn monomers in the 
polymer chain,   M0  is the molecular weight of a Kuhn segment (137 g/mol for PEG1),  b  is the statistical length 
of a Kuhn segment (1.1. nm for PEG1), and  N A   is Avogadro’s constant. Table SI-2 summarizes the calculation 
results. From the results of Table SI-2 it is seen that the majority of the solutions in the semidilute regime are in 
the entangled semidilute regime. 

 
Table SI-2. Entanglement concentration calculation 
results for PEG solutions.  

PEG   Mn  [kg/mol]   N    ce  [g/mL]  		
ce / c*  

2* 1.9 13.9 0.176 1.17 
4 3.5 25.5 0.1129 1.19 
7 6.9 50.4 0.0672 1.18 
17 16.8 122.6 0.0345 1.18 
197 196.7 1436 0.0054 1.17 
363 363.1 2560 0.00344 1.19 

*We note that for PEG 2, the molecular weight of 
the polymer is close to the entanglement strand 
molecular weight of 2 kg/mol in the melt.2  
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Dynamic Magnetic Susceptibility (DMS) Measurements. DMS measurements of particles suspended in the 
polymer solutions were obtained using an Acreo Dynomag AC susceptometer. During the measurements, a 
constant field of 5 Gauss (397.89 A m-1) is applied and the frequency of the applied field is swept in a range of 
10 Hz to 100 kHz. 200 µL of the particle suspensions were used for analysis at room temperature (298 K).  

Figure SI-3 shows examples of the DMS spectra of the particles in polymer solutions of different molecular 
weights. Here we only show the samples with the highest concentration to demonstrate that follow the Debye 
model. Similar behavior was observed for the samples with lower concentration.   

  

 
Figure SI-3. DMS measurements of PEG-grafted MNPs in PEG solutions prepared with a) PEG 2, b) PEG 4, c) 
PEG 7, d) PEG 17, e) PEG 197, and d) PEG 363 at the highest concentration c/c* room temperature, showing 
the Debye behavior. 



	 5	

Reproducibility of the observed breakdown of the Stokes-Einstein relation for the rotational 
diffusivity. Additional measurements were carried out with two more batches of cobalt ferrite nanoparticles 
coated with PEG of different molecular weights (2 kg/mol and 5 kg/mol), resulting in different hydrodynamic 
radii. Figure SI-4 shows the hydrodynamic diameters of the two particles. Figure SI-5 compares measured and 
theoretical rotational diffusivities for the two particles in solutions of four different PEG molecular weights, and 
Figure SI-6 shows the ratio of experimental to Stokes-Einstein diffusivity for the two particles as a function of 
concentration in the four PEG solutions. These results are similar to those in the main manuscript for the larger 
set of polymer molecular weights. 

 
Figure SI-4. Hydrodynamic diameter distributions for two additional PEG-coated cobalt ferrite nanoparticle 
batches used to test reproducibility of results. MNP-A is coated with PEG 2 kg/mol and MNP-B is coated with 
PEG 5 kg/mol. 
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Figure SI-5. Measured (DR) and predicted (DR-SE) rotational diffusivities for the two PEG-coated nanoparticles 
of Figure R2 as a function of the concentration of PEG in solution for four different molecular weights. Note 
that the SE relation accurately predicts the rotational diffusivity for the flow molecular weight polymers (2 and 
4.6 kg/mol), begins to show deviations for the intermediate molecular weight (20 kg/mol), and appears to break 
down for the highest molecular weight (400 kg/mol). 

 
Figure SI-6. Ratio of experimental to predicted rotational diffusivity for the two particles in Figure R3 as a 
function of concentration of polymer in solution. This graph shows the same behavior as Figure 5 in the 
manuscript, showing reproducibility of the results. 
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Potential mechanisms for deviations from predictions of the Stokes-Einstein relation.  
Compression of the grafted polymer layer. The observed deviation from predictions by the SE relation may 

be attributed to the compression of the polymer grafted on the particle surface. Taking into consideration that as 
*c c increased the fraction of the solvent present in solution decreases, one would expect that the polymer 

grafted on the particle surface tends to shrink. To account for changes in the configuration of the grafted 
polymer, we calculated the hydrodynamic radius of the nanoparticles assuming that the SE relation in Eq. (1) 
from the main document accurately predicts the rotational diffusion coefficient based on the viscosity measured 
in the rheometer. Table SI-3 summarizes the results of these calculations.  

Table SI-3. Effective hydrodynamic radius calculated using the Stokes-Einstein 
relation and the macroscopic (rheometer) viscosity of the solutions.  

*c c  
PEG 2 
p effr −   

[nm] 

PEG 4 
 

[nm] 

PEG 7
 

[nm] 

PEG 17 
 

[nm] 

PEG 197
 

[nm] 

PEG 363
 

[nm] 
0.4 20.6 20.4 18.8 19.4 17.5 17.6 
0.6 20.6 20.3 18.3 18.7 16.3 16.4 
0.8 20.5 20.3 18.3 18.1 15.2 15.0 
1.0 20.2 19.9 19.0 18.1 14.5 14.2 
1.4 20.2 20.1 19.1 17.6 12.6 12.4 
2.0 19.9 20.2 19.8 17.2 12.0 10.9 
3.0 19.4 20.3 19.9 16.4 10.2 9.3 
4.0 19.7 20.3 20.7 16.6 8.8 8.0 
5.0 20.2 20.4 21.0 17.3 7.8† 7.0† 
6.0 20.5 20.9 20.4 18.0 7.0† 6.4† 

 †Hydrodynamic diameter smaller than the core radius of the nanoparticles 
determined by TEM.  

 

In solutions prepared with PEG 197 and PEG 363, where the SE relation fails to predict the rotational 
diffusion of the nanoparticles, as the polymer concentration increases the hydrodynamic radius of the 
nanoparticles would have to significantly decrease, suggesting possible compression of the grafted polymer. 
However, we note that at the highest concentrations, when * 5.0c c > , the nanoparticle’s effective 
hydrodynamic radius would have to be smaller than the radius of the inorganic cores, as measured by TEM. 
Thus, even though it is possible that the configuration of the grafted polymer may change due to increasing 
polymer volume fraction, we believe this phenomenon is unable to wholly explain the observed deviation of the 
experimental rotation diffusion coefficient of the nanoparticles from the predictions of the SE relation.   

Effect of polymer correlation length. The correlations length, defined as the average distance from a 
monomer on one chain to the nearest monomer on another chain1 and estimated by using the relationship 

( ) 0.75*gR c cξ −= is a function of the polymer concertation and the radius of gyration of the polymer. 

p effr − p effr − p effr − p effr − p effr −
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Table SI-4. Calculated correlation lengths for PEG solutions.  
*c c  

[approx.] 
PEG 2 
ξ [nm] 

PEG 4  
ξ [nm] 

PEG 7 
ξ [nm] 

PEG 17 
ξ [nm] 

PEG 197 
ξ [nm] 

PEG 363 
ξ [nm] 

0.4 3.0 4.8 7.2 11.2 50.9† 63.14† 
0.6 2.2 3.5 5.3 8.3 37.6† 46.58† 
0.8 1.8 2.9 4.3 6.7 30.3† 37.54† 
1.0 1.5 2.4 3.6 5.6 25.6† 31.76† 
1.4 1.2 1.9 2.8 4.4 19.9 24.67 
2.0 0.9 1.4 2.2 3.4 15.2†† 18.88 
3.0 0.8 1.1 1.6 2.7 11.2†† 16.06†† 
4.0 0.6 0.9 1.3 2.2 9.1†† 12.95†† 
5.0 0.5 0.7 1.1 1.8 7.7†† 10.95†† 
6.0 0.4 0.6 0.9 1.5 6.7††3 8.28†† 

 †Correlation length ξ  values larger than the particle hydrodynamic radius 
 ††Correlation length ξ  values smaller than the particle hydrodynamic radius 

 
Comparison to other hydrodynamic models. In semi-dilute solutions of unentangled polymer, the empirical 

relation between the polymer concentration and the probe hydrodynamic diameter ( )0 exp pKr c
µ νη η=  has been 

widely used to predict the viscosity experienced by the nanoparticle.4 Here, 0η  is the solvent viscosity, c  is the 
polymer concentration and K , µ and, ν  are constants whose values vary from system to system. Following 

these ideas, recent models suggest that the nanoparticle diffusivity scales as ( )( )0 exp bD D a L ξ=  where 0D  

is the rotational diffusion coefficient of the nanoparticles in pure solvent, a  and b  are experimental parameters, 
and L  is a function of the particle radius pr  and/or gR .3, 5, 6 

In Figure SI-4 we compare the experimentally measured relative diffusivities ( )0ln −R RD D  to the 

hydrodynamic model proposed by Holyst et al.7 assuming ξgR  as the characteristic length. We see that the 

diffusivities do not collapse onto a single curve as a function of ξgR  (Figure SI-4). Only the diffusivities for 

polymers with a radius of gyration smaller than the radius of gyration of the nanoparticles ( )1>p gr R  collapse 
onto a single curve as a function of  (Figure SI-4). The experimental parameters 1.04a =  and 0.77b = are 
similar to those reported by Holyst et al.7 for the translational diffusion coefficient of proteins in PEG solutions. 

However, for high molecular weight PEG ( )1<p gr R  the data lies well off of this curve.  
Instead of the radius of gyration the polymer, Kalwarczyk et al.8 proposed a new variable defined 
2 2 2
eff p gR r R− − −= +  as the scaling formula. In Figure SI-5 we show the experimentally measured relative 

diffusivities as 0D D  a function 2 effR ξ . According to the results, we see a decently collapse of the data in 
samples where p gr R> . However, there is significant spread for high molecular weight polymers with p gr R< . 

gR ξ
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Figure SI-7. Relative diffusivities  as a function of , which collapsed the data for large 
probes in Holyst et al.7 The solid black line represents an exponential fit to the data with fitting parameters a = 
0.77, b = 1.04. These ratio fails to collapse the data onto a single curve. 

 
 

 
Figure SI-8. Relative diffusivities  as a function of . The effective radius  is defined as 

 , as proposed by Kalwarczyk et al.8 The solid line represents an exponential fit with fitting 
parameters a = 0.77, b = 1.48. These ratio also fails to collapse the data onto a single curve 
 

The existence of a depletion layer of solution polymer at the nanoparticle surface. To explore the existence 
of a depletion layer as a possible reason for the observed deviations of the rotational diffusion coefficient from 
the predictions of the SE relation, we estimated the thickness of the depletion layer in our system using the 
approximation by Fleer et al.3, 9 for spheres. The thickness of the depletion layer depends on the polymer 
concentration according to the equation  

 
0.52 2

2 23
ξ

δ
ξ

⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠

p

p

r
r

  (1) 

( )0ln R RD D−
gR ξ

( )0ln R RD D− 2 effR ξ
2 2 2
eff p gR r R− − −= +
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where pr  is the radius of the nanoparticles and ξ  the correlation length of the polymer in solution. The results 
of these calculations are summarized in Table SI-5. According to these calculations, as the polymer radius of 
gyration increases, the thickness of the depletion layer also increases to values larger than the diameter of the 
nanoparticles of the polymer, and is compressed as the concentration of the polymer increases. In solutions 
prepared with high molecular weight PEG and  high c/c* the depletion layer decreases to the point where it is 
comparable to the depletion layer in low molecular weight PEG, however, the SE relation still fails to predict 
the rotational diffusion coefficient of the nanoparticles in this solutions. Furthermore, if the depletion layer 
where the explanation for our observations one would expect that as the concentration of PEG increases, the 
hydrodynamic drag on the nanoparticles would significantly increase due to the compression of the depletion 
zone. Imagine a solid sphere inside a liquid bubble dispersed in another medium of viscosity similar to the 
macroscopic viscosity. As the thickness of the gap between the solid and the outer medium increases the 
effective viscosity that determined the drag would increase. We did not see this effect because the rotational 
diffusivity remains relatively constant with increasing c/c*. Thus, the existence of a zone with lower polymer 
concentration surrounding the nanoparticle cannot be the only explanation for the observed deviation.  
 

Table SI-5. Theoretical thickness of the depletion later proposed by Fleer et al.3, 9  
*c c  

[approx.] 
PEG 2 
δ  [nm] 

PEG 4 
 δ  [nm] 

PEG 7 
δ  [nm] 

PEG 17 
δ  [nm] 

PEG 197 
δ  [nm] 

PEG 363 
δ  [nm] 

0.4 8.85 14.00 20.38 29.35 55.85 57.20 
0.6 6.56 10.46 15.45 22.94 52.96 55.13 
0.8 5.30 8.47 12.60 18.98 50.07 52.95 
1.0 4.49 7.19 10.72 16.29 47.29 50.77 
1.4 3.49 5.60 8.39 12.85 42.32 46.61 
2.0 2.67 4.29 6.44 9.92 36.35 41.19 
3.0 2.25 3.21 4.77 7.96 29.39 37.57 
4.0 1.82 2.59 3.85 6.44 24.75 32.61 
5.0 1.54 2.19 3.25 5.45 21.46 28.82 
6.0 1.17 1.89 2.84 4.40 19.01 22.96 

 
Hydrodynamic slip at the nanoparticle/solution interface. An alternative method to analyze the deviations is 

by introducing an equivalent slip effect at the solid-liquid interface.10, 11 For particles in polymer matrices, 
Ganesan et al.11 developed a model for the rotational diffusion coefficient of nanoparticles with hydrodynamic 
slip. Even though, Ganesan et al. 11 suggested that the formalism can be extended to polymer in solutions taking 
into consideration the polymer depletion effects, lacks of an explicit model. Thus, we consider the possibility 
that the functional form obtained by Ganesan et al.11  of nanoparticles in the melt is valid for system.  The slip 
phenomenon has been analyzed by Ganesan et al.11 to explain deviations from the Stokes-Einstein relation of 
nanoparticles in polymer melts and polymer solutions. Phenomena such as autophobic dewetting of polymer in 
solution from the grafted polymer could result in hydrodynamic slip at the surface of the nanoparticles.11-14 To 
estimate the slip length we used the model developed by Ganesan et al.11 where the rotational diffusion 
coefficient of nanoparticles in a polymer melt where slip occurs is given by  

 
( )

3

1 3
8

B
R

b p

k T
D

r
λ

πη
+

=   (2) 

where bη  is the macroviscosity of the solution, pr  the hydrodynamic radius of the nanoparticles, and λ  is the 
ratio of slip length to particle radius known as the dimensionless slip length.   

We used Eq (2) to estimate the dimensionless hydrodynamic slip assuming the rotational diffusion 
coefficient of the nanoparticles measured by DMS. Table SI-6 summarizes these results. These calculations 
indicate that hydrodynamic slip would have an effect of the rotation diffusivity of the nanoparticles in polymer 
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solutions. The length of the slip is a function of polymer concentration and the molecular, and it has a greater 
effect on the rotational diffusion of nanoparticles in polymer solutions prepares with PEG 197 and PEG 363. 
Although various studies have shown that the no-slip boundary condition does not always apply for polymer 
melts,11 its effect on colloidal particles in solutions has rarely been explored.15, 16  

 

Table SI-6.  Dimensionless slip length λ calculated from the experimental rotational 
diffusivity using Eq. (2).  

*c c  
[approx.]  

PEG 2 
λ   

PEG 4 
λ    

PEG 7 
λ   

PEG 17 
λ   

PEG 197 
λ    

PEG 363 
λ    

0.4 0.04 -0.018 0.068 0.031 0.165 0.154 
0.6 0.05 -0.014 0.104 0.073 0.279 0.273 
0.8 0.03 -0.015 0.101 0.119 0.420 0.461 
1.0 0.11 0.007 0.058 0.120 0.549 0.596 
1.4 0.14 -0.006 0.048 0.157 0.990 1.061 
2.0 0.09 -0.009 0.012 0.194 1.225 1.721 
3.0 0.18 -0.013 0.004 0.272 2.217 2.987 
4.0 0.12 -0.014 -0.034 0.248 3.586 4.826 
5.0 0.18 -0.021 -0.046 0.183 5.286 7.443 
6.0 -0.33 -0.042 -0.021 0.125 7.287 9.645 
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Rotational Hydrodynamic Drag and Diffusivity of a Particle Surrounded by a Depletion Layer  
 

Consider the situation in Figure 6a shows a schematic representation of the system. In this figure, the 
magnetic nanoparticles, represented by the solid black sphere, are surrounded by a depletion zone where the 
polymer concentration is lower. Outside the depletion zone, there is a uniform polymer solution. For simplicity, 
the viscosities of the inner and outer regions are assumed to be uniform. By symmetry about the z –axis, no 
quantity depends on φ. Therefore, the velocity vϕ  is independent of ϕ , and the velocity field is such that 

rv v 0θ= =  from the continuity equation in spherical coordinates. Consequently, the r and θ components of 
Stokes’ equation are reduced to 0r θ∂ ∂ = ∂ ∂ =P P , which indicate that the dynamic pressure is constant 
throughout the fluid. The φ component of the Stokes’ equation becomes 

 
  
0 = 1

r 2

∂
∂r

r 2 ∂vϕ
∂r

⎛

⎝⎜
⎞

⎠⎟
+ 1

r 2 sinθ
∂
∂θ

sinθ
∂vϕ
∂θ

⎛

⎝⎜
⎞

⎠⎟
−

vϕ
r 2 sin2θ

  (3) 

taking into consideration that vϕ  depends on θ and r, vϕ  can be expressed as  

   
vϕ r,θ( ) = f r( )sinθ  at R r R δ< < +   (4) 

   
vϕ r,θ( ) = g r( )sinθ  at r R δ> +  (5) 

where δ is the thickness of the depletion layer around the sphere.  
Substituting the assumed forms of vϕ  Eq. (3) one obtains  

 
  

d
dr

r 2 df
∂r

⎛
⎝⎜

⎞
⎠⎟
− 2 f = 0   (6) 

 
  

d
dr

r 2 dg
∂r

⎛
⎝⎜

⎞
⎠⎟
− 2g = 0   (7) 

The general solutions of these differential equations are  

   f r( ) = ar + br −2   (8) 

   g r( ) = cr + dr −2   (9) 

where a, b, c, and d are constants. The boundary conditions for the velocity are  

0rv = ; 0vθ = ; sinv Rϕ ω θ=  at r R=  

0rv = ; 0vθ = ; ( ) ( )v R v Rϕ ϕδ δ− ++ = +  at r R δ= +  

Then, taking into consideration these boundary conditions one obtains, at r R= ,  

   f R( ) = aR + bR−2 =ωR   (10) 

at the interface r R δ= +  

   a R +δ( ) + b R +δ( )−2
= c R +δ( ) + d R +δ( )−2

  (11) 

and, at r = ∞   

   g ∞( ) = 0   (12) 
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hence 0c = . 

With ( ),v rϕ θ  being the only non-zero velocity component, the shear stress is  

 
 
τ rϕ = τϕr = µ r ∂

∂r
vϕ
r

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   (13) 

and at r R δ= +   

 
  
µ1 r ∂

∂r
f
r

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

R+δ

= µ2 r ∂
∂r

g
r

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

R+δ

  (14) 

where 1µ  is the viscosity of the solution in the depletion layer and 2µ  is the viscosity of the polymer solution. 
Here we will assume that the viscosity in the polymer depletion zone corresponds to the solvent viscosity.9  
From Eq. (14) one obtains 

 
  

µ1

µ2

= d
b

  (15) 

The integration constants a, b, c, and d can be shown to be given by 

 

  

a =ω − ω

1+
µ1

µ2

−1
⎛
⎝⎜

⎞
⎠⎟

R
R +δ

⎛
⎝⎜

⎞
⎠⎟

3   (16) 

 

  

b = ωR3

1+
µ1

µ2

−1
⎛
⎝⎜

⎞
⎠⎟

R
R +δ

⎛
⎝⎜

⎞
⎠⎟

3   (17) 

 

   c = 0   (18) 

 

  

d =
µ1

µ2

ωR3

1+
µ1

µ2

−1
⎛
⎝⎜

⎞
⎠⎟

R
R +δ

⎛
⎝⎜

⎞
⎠⎟

3   (19) 

Therefore, the expression for the velocity in the depletion layer R r R δ< < + is 

 

  

vϕ r,θ( ) =ωr − ωr

1+
µ1

µ2

−1
⎛
⎝⎜

⎞
⎠⎟

R
R +δ

⎛
⎝⎜

⎞
⎠⎟

3 +
ω sinθ

r 2 1+
µ1

µ2

−1
⎛
⎝⎜

⎞
⎠⎟

R
R +δ

⎛
⎝⎜

⎞
⎠⎟

3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (20) 

whereas the velocity in the outer region r R δ> +  is  

 

  

vϕ r,θ( ) = µ1

µ2

ωR3

1+
µ1

µ2

−1
⎛
⎝⎜

⎞
⎠⎟

R
R +δ

⎛
⎝⎜

⎞
⎠⎟

3 ⋅
sinθ
r 2   (21) 

To calculate the torque at the particle surface, we evaluate the shear stress at r R=   
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τ rϕ = µ r ∂
∂r

vϕ
r

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

r=R

= −
3µ1ω sinθ

1+
µ1

µ2

−1
⎛
⎝⎜

⎞
⎠⎟

R
R +δ

⎛
⎝⎜

⎞
⎠⎟

3   (22) 

Then, the torque is  

 

  

G = 2πR3 τ rϕ r=R
sin2θ

0

π

∫ dθ = −
8πµ1ωR3

1+
µ1

µ2

−1
⎛
⎝⎜

⎞
⎠⎟

R
R +δ

⎛
⎝⎜

⎞
⎠⎟

3 = ξRω   (23) 

where the rotational friction coefficient Rξ  is 

 

  

ξR =
8πµ1R

3

1+
µ1

µ2

−1
⎛
⎝⎜

⎞
⎠⎟

R
R +δ

⎛
⎝⎜

⎞
⎠⎟

3   (24) 

Assuming that the Einstein formalism for the rotational diffusivity applies albeit with the rotational 
hydrodynamic drag from Eq. (24), that is R B RD k T ξ= , we obtain an expression for the rotational diffusion 
coefficient experienced by a solid sphere in a polymer solution including the effect of the depletion zone  

 
3

1
3

1 2

1 1
8

B
R

k T RD
R R

µ
πµ µ δ

⎡ ⎤⎛ ⎞⎛ ⎞= + −⎢ ⎥⎜ ⎟⎜ ⎟+⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
  (25) 
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