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Video-S1: Continuous monitoring of a human wrist and signals via a SSPF-based sensing device.
Video-S2: The homogeneous and rapid response to temperature by a SSPF-2. 
Video-S3: Application of SSPF-2 for monitoring temperature and as a thermal switch (a fire 

alarming system).
Video-S4: Application of SSPF-2 for monitoring light and as a light switch via a temperature 

mechanism.
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Figure S1. Atomic Force Microscope (AFM) images comparing the roughness between WSPFs and 
SSPFs. 

http://www.googleadservices.com/pagead/aclk?sa=L&ai=DChcSEwi1yoq7sOLOAhWmv-0KHbnuCjUYABAA&ohost=www.google.com.sa&cid=CAESIeD2MBs37E5yVBjlqcHhdPxrMw8g27evF5JV3QUqdZPXuw&sig=AOD64_28qMRLeIEJ1wKQupfAEO7E2RSBJg&q=&ved=0ahUKEwikkoa7sOLOAhVGHxoKHTTZDHAQ0QwIGg&adurl=


3

Figure S2. The typical crack formation process from WSPF-2 to SSPF-2. a) WSPF-2; b) beginning 
of the cracking process; c) SSPF-2. All scale bars are 20 µm.

Figure S3. The thermal deformation of a) WSPF-2, which bends due to its CTE value (PDMS: 
expansion, SWCNT: contraction) and b) SSPF-2, which has a fragmentation to its coating, as well 
as the corresponding illustration of deformations. The temperature was set at 100 ℃. 
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Table S1. A summary of the key responses of SSPFs to variation in pressure.

Sample a R0

(103, ohm)
Pressure/90% 
(break, kPa)b

△R/90%
(106, ohm)

Sensitivity
(break, kPa-1) c

Effective 
sensitivity (kPa-1)d

SSPF-1 13.2 45/40.5 27.7/19.5 46.6 36.5
SSPF-2 2 63/56.7 35.1/24.6 278.6 216.9
SSPF-3 0.6 81/72.9 44.9/32.4 923.9 740.7

a: Sample size = a circle film with a diameter of 8 mm, and silver as electrode; 
b: We define that the preferred detecting scope is 90 % of its breaking pressure load;
c: The sensitivity is defined as △R/R0 to pressure; 
d: The effective sensitivity is calculated from 90 % of its breaking pressure load with the 
corresponding variation in resistance.
Note that all data are the average values taken from three samples.

Figure S4. A summary of the recent literature with the key parameters for flexible pressure-
sensing systems.
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Table S2. A summary of the key parameters of SSPFs to variation in temperature.

Sample R0

(103, 
ohm)a

Tem./90% 
(break, ℃)b

R/90%
(break, 106,

 ohm)

Thermal 
Index

(break, 103, 
K)c

Effective 
Thermal 

Index
(103, K-1)d

SSPF-1 13.2 56.2/50.6 27.7/19.5 29.9 29.9
SSPF-2 2 73.2/65.9 35.1/24.6 20.4 20.4
SSPF-3 0.6 86.7/78 44.9/32.4 17.6 17.6

a: Sample size = a circle film with a diameter of 8 mm and with silver as the electrode; 
b: We define that the preferred detecting scope is 90 % of its breaking temperature;
c: The sensitivity is calculated according to Eq. 3; 
d: The effective sensitivity is calculated from 90 % of its breaking temperature with the 
corresponding variation in resistance.
Note that all data are the average values taken from three samples.

Figure S5. A summary of the recent literature with the key parameters for temperature-sensing 
materials.
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Figure S6. The response of SSPF-2 to light. a) Relationship between temperature of SSPF-2 and 
distance from a light; b) the temperature distribution of the film with different distances from 
the light; c)  light-monitoring performance; d) equivalent circuit and digital images for 
demonstrating the efficiency of SSPF-2 as a light switch. Note that the light is 100 W and the 
default distance is 10 cm.
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Figure S7. SEM images illustrating the sensing mechanism of SSPFs. a) Deformation of SSPF 
without strain and with strain; the scale bar is 20 µm. b) Macroscopic piezoresistive behavior of 
SSIs; the scale bar is 1 µm. c) Microscopic piezoresistive behavior of SWCNT bundles; the scale 
bar is 500 nm. 
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Figure S8. SEM images and illustration for the evolution to WSPF transforming to SSPF and the 
deformation of SSPFs. All scale bars are 20 µm.
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Figure S9.  a) Typical SWCNT ink (1 mg/ml); b) TEM of SWCNTs; c) Raman spectra with D, G, and 
G’ band peaks, indicating the high purity of SWCNT. Note that the curve is generated directly 
from the ink sample, as shown by the inset image.
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Figure S10. Scheme illustrations of the fabrication of SSPF-based pressure-sensing systems and 
the digital images of the typical devices a) as a unit and b) as an array. 
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Figure S11. Illustration and digital image of the setups used to test the sensitivity of films to 
mechanical pressure.

Figure S12. Digital image of the setups used to test for sensitivity to temperature.
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