Electronic Supplementary Information

An Efficient Charge Separation and Photocurrent Generation in the Carbon dot-Zinc Oxide Nanoparticles Composite

Monoj Kumar Barman¹, Piyali Mitra¹, Rajesh Bera¹, Somnath Das², Amitava Pramanik², Amitava Parta¹*

¹Department of Materials Science. Indian Association for the Cultivation of Science, Kolkata,

²Unilever R& D Bangalore 64, Main Road, Whitefield, Bangalore 560066, India

*Author to whom correspondence should be addressed; electronic mail: <u>msap@iacs.res.in</u> Phone: (91)-33-2473-4971, Fax: (91)-33-2473-2805

Figure S1: Particles size distribution of carbon dots.

Figure S2: Particles size distribution of ZnO NPs.

Figure S3: XPS spectrum of ZnO nanoparticles.

S4: DLS measurement for pure C-dots, ZnO nanoparticles and C-dots-ZnO compoite

S5: XPS spectrum of C-dot-ZnO composite.

Figure S6: overlap between absorption spectrum of ZnO nanoparticles and emission spectrum of C-dot.

Figure S7: Cyclic Voltammetry spectra of ZnO NP and C-dot respectively.

Figure S8: Cross-sectional thickness measurement of the composite device from SEM with varying layer. (A) 1 layer, (B) 2 layer, (C) 3 layer and (D) 5 layer.

Figure S9: Photoresponsive properties of the C-dot-ZnO composite system.

Figure S10: I-V characteristic curve of ZnO nanoparticles at a fixed voltage of 2V