Electronic Supplementary Information

3D Ordered Porous Mo_xC (x= 1 or 2) for Advanced Hydrogen Evolution and Li Storage

Hong Yu,^{a,b,c}, Haosen Fan^{b,*}, Jiong Wang^c, Yun Zheng^b, Zhengfei Dai^b, Yizhong Lu^c, Junhua

Kong^d, Xin Wang^c, Young Jin Kim^{a,*}, Qingyu Yan^{b,*} and Jong-Min Lee^{c,*}

 ^a School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

^b School of Materials Science and Engineering, Nanyang Technological University, Block

N4.1 Nanyang Avenue, 639798, Singapore

^c School of Chemical and Biomedical Engineering, Nanyang Technological University,

637459, Singapore

- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore
 - * E-mail addresses: yj.kim@ntu.edu.sg; alexyan@ntu.edu.sg; jmlee@ntu.edu.sg

Fig. S1. (a-c) FESEM images and (d) TGA of carboxylic polystyrene (COOH-PS) spheres.

Fig. S2. XPS survey spectrum of (a) Mo₂C and (b) MoC. XPS high resolution scans of C 1s electrons of 3D ordered porous (c) Mo₂C and (d) MoC.

Fig. S3. Nitrogen adsorption/desorption isotherms of (a) Mo₂C and (b) MoC.

Fig. S4. (a) FESEM, (b) TEM and HRTEM images of MoC.

Fig. S5. Electrochemical impedance spectra to measure the resistance of the system for I-R correction of (a) Mo₂C, (b) Pt/C, (c) MoC and (d) Mo₂C during stability test at different overpotentials in 1.0 M PBS buffer solution.

Fig. S6. Electrochemical impedance spectra to measure the resistance of the system for I-R correction of (a) Mo_2C , (b) Pt/C, (c) MoC and (d) Mo_2C during stability test at different overpotentials in 1.0 M KOH solution.

Fig. S7. Electrochemical impedance spectra to measure the resistance of the system for I-R correction of (a) Mo_2C , (b) Pt/C, (c) MoC and (d) Mo_2C during stability test at different overpotentials in 0.5 M H₂SO₄ solution.

Fig. S8. Equivalent electrical circuit used to fit the Nyquist plots. R_s represents the resistance of the system and R_{ct} is attributed to the charge transfer resistance due to the HER process.

Fig. S9. Cyclic voltammetry (CV) of the first three cycles at a scan rate of 0.2 mV s⁻¹ of Mo_2C .

Fig. S10. (a) The first three galvonostatic discharge/charge voltage profiles, and (b) coulombic efficiency for the first 100 cycles of MoC at a current density of 200 mA g^{-1} .

Catalyst	Electrolyte	Onset Potential (mV vs RHE)	η at 10 mA cm ⁻² (mV vs RHE)	j ₀ (mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	Ref
Mo ₂ C	1.0 M PBS (PH 7)	33	204	0.118	42.5	This work
Mo ₂ C	1.0 M KOH	40	128	0.081	34	This work
Mo ₂ C	$0.5 \text{ M} \text{ H}_2\text{SO}_4$	70	204	0.153	43.9	This work
MoC _x	1.0 M KOH	80	151	0.029	59	S1
MoS_2	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	120	~190	0.0089	50	S2
MoN/C	0.1 M HClO ₄	157		0.036	54.5	S3
NiMoN/C	0.1 M HClO ₄	78		0.24	36	S3
CoSe ₂	$0.5 \text{ M} \text{ H}_2\text{SO}_4$	~100	137	0.005	40	S4
MoS _{2.7} @NPG	0.2 M PBS (PH 7)	120			60	S5
Co-S film/FTO	1.0 M PBS (PH 7)	43	~180	0.256	93	S6
WS ₂	$0.5 \text{ M} \text{ H}_2\text{SO}_4$	100			48	S7
NiP/Ti	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	~50	140	0.033	46	S8

Table S1. Summary and comparison of activities of Non-Pt electrocatalysts for HER.

Reference

- S1 H. B. Wu, B. Y. Xia, L. Yu, X.-Y. Yu, X. W. Lou, Nat. Commun., 2015, 6, 6512.
- S2 J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, Y. Xie, Adv. Mater., 2013, 25, 5807-5813
- S3 W.-F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu,R. R. Adzic, *Angew. Chem. Int. Ed.*, 2012, 51, 6131-6135.
- S4 D. Kong, H. Wang, Z. Lu, Y. Cui, J. Am. Chem. Soc., 2014, 136, 4897-4900

- S5 X. Ge, L. Chen, L. Zhang, Y. Wen, A. Hirata, M. Chen, Adv. Mater., 2014, 26, 3100-3104.
- S6 Y. Sun, C. Liu, D. C. Grauer, J. Yano, J. R. Long, P. Yang, C. J. Chang, J. Am. Chem. Soc., 2013, 135, 17699-17702.
- S7 L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, H. Dai, Angew. Chem. Int. Ed., 2014, 53, 7860-7863.
- S8 E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R.
 E. Schaak, J. Am. Chem. Soc., 2013, 135, 9267-9270.