Probing T_1 - T_2 interactions and their imaging implications through a thermally responsive nanoprobe

Juan Gallo^{1, *}, Bethany Harriss², Javier Hernández-Gil², Manuel Bañobre-López¹, Nicholas J Long^{2, *}

¹ Advanced (magnetic) Theranostic Nanostructures Group, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n 4715-330 Braga, Portugal

² Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK

juan.gallo@inl.int

n.long@imperial.ac.uk

Figure S1. TEM (left) and scanning transmission electron microscopy (STEM) (right) images of $Mn_xFe_{3-x}O_4$ nanoparticles. Inset, size distribution of the nanoparticles

Figure S2. Overview TEM micrographs of the final temperature responsive nanoparticles.

Sample	D _h (T = 20 °C)	<i>D_h</i> (T = 40 °C)
1	39 ± 6	37 ± 8
2	40 ± 9	42 ± 7
3	51 ± 9	49 ± 8
4	65 ± 11	67 ± 9
5	482 ± 8	235 ± 11
6	416 ± 15	246 ± 18
7	502 ± 26	222 ± 7
8	497 ± 10	243 ± 2
9	502 ± 19	250 ± 16
10	456 ± 9	212 ± 13
11	478 ± 7	235 ± 7
12	485 ± 5	225 ±23

Table 1. Hydrodynamic diameters of the samples measured in water at 20 and 40 °C.

Sample	Average number of cores	
1	n/a	
2	n/a	
3	n/a	
4	n/a	
5	4.56	
6	4.35	
7	4.89	
8	5.97	
9	4.48	
10	4.67	
11	4.77	
12	6.32	

Figure S3. Left, representative histograms of samples 8 and 12 of the number of magnetic cores per pNIPAM particle. Right, table summarising the average number of magnetic cores per particle for the different samples prepared.

Figure S4. EDX spectra of $Mn_xFe_{3-x}O_4@SiO_2@pNIPAM-Gd^{3+}$ nanoparticles showing peaks from Si (white arrow), Mn (green arrow), Gd (blue arrow) and Fe (brown arrow).

Figure S5. Plot showing the linear relationship between the longitudinal relaxivity of samples 5 to 8 and the thickness of the silica layer, both at 25 and 40 °C.

Figure S6. Plot showing the decrease of longitudinal and transverse relaxivity of samples 5 to 8 versus the thickness of the silica layer.

$$R_2 = \frac{16}{45} \nu \tau_D (\gamma B_{eq})^2$$
 (eq 1)^[1]

Equation S1. Transversal relaxation rate in the motion average regime. v, magnetic volume fraction; τ_D , diffusion time; γ , proton gyromagnetic factor; B_{eq} , nanoparticle equatorial field.

Figure **S7**. T_2 and T_1 -weighted MRI phantoms of sample **11** compared to water, 8 nm Fe₃O₄ nanoparticles and Dotarem. Magnetite nanoparticles at a concentration of 350 μ M of Fe, Dotarem at a concentration of 350 μ M Gd3+.

[1] M. R. J. Carroll, R. C. Woodward, M. J. House, W. Y. Teoh, R. Amal, T. L. Hanley, T. G. St Pierre, *Nanotechnology* **2010**, *21*, 35103.