Supplementary Information

Synthesis and fast transfer of monolayer MoS₂ on reusable fused silica

Tao Liang,^{a,b} Shuang Xie,^c Weifei Fu,^b Yu Cai,^b Chinnathambi Shanmugavel,^d Hideo Iwai,^e Daisuke Fujita,^f Nobutaka Hanagata,^d Hongzhen Chen^b and Mingsheng Xu*^a

^aCollege of Information Science & Electronic Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China. E-mail: msxu@zju.edu.cn

^bDepartment of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

^cSchool of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

^{*d}Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba* 305-0047, Japan.</sup>

^eSurface & Microbeam Analysis, Materials Analysis Station, National Institute for Materials Science, Tsukuba 305-0047, Japan.

^fNano Characterization Unit, National Institute for Materials Science, Tsukuba 305-0047, Japan. **Experimental Section**

Sample Preparation. Monolayer MoS_2 was synthesized by CVD in a three-zone furnace according to the procedures described previously.²⁹ MoO₃ (Alfa Aesar, 15mg) and S powder (ZNXC, 100mg) were used as Mo and S precursors with a distance of ~20cm. Ar was used as the carrier gas with a flow rate of 100sccm. The pressure maintains ~1000Pa during growth. The temperature for the central MoO₃ source ramped up to 750 °C in 60 min and maintained for 20 min. The temperature for the upstream sulfur source increased along with the MoO₃ temperature with a maximal of 250 °C.

Fast transfer technique. A thin layer of PMMA (~200nm) was spin-coated onto MoS₂/fused silica and cured for 10min at 150 °C. Then the PMMA/MoS₂/fused silica was immersed into 40% HF solution for 5s to detach the edge. After that the PMMA/MoS₂/fused silica was pulled out and gradually immersed into water within 10s. The PMMA/MoS₂ detached from the fused silica surface during the immersing process. At last, the clean desired substrate was used to scope out the PMMA/MoS₂. PMMA was removed in acetone after drying.

Characterization of MoS₂. Optical images are taken by Nikon LV100 POL, SEM images are obtained on S-4800, Hitachi, with an accelerating voltage of 3.0kV. The Raman and PL tests are performed on Ramanplus, Nanophoton with a 532 nm laser source. The crystalline structures are examined by TEM (JEM, 2100F, 200 kV). The AES measurements are carried out with a scanning Auger electron spectroscope (ULVAC-PHI model SAM650) equipped with a cylindrical mirror analyzer. The AES

spectra and area analysis are acquired with a primary electron beam of 10 kV and a takeoff angle of 42°. AFM images are obtained on Veeco 3D with a tapping mode.

Fig. S1 Optical microscopy images of MoS2 domains synthesized on (a) sapphire and

(b) SiO₂(300nm)/Si substrates.

Fig. S2 (a) Raman and (b) PL spectra of MoS_2 domains synthesized on various substrates including fused silica, sapphire, and $SiO_2(300nm)/Si$.

Fig. S3 AES characterization of a MoS₂ domain. (a) A secondary electron image of the sample showing the elements mapping region. (b) Mo MNN Auger electron map. (c) S KLL Auger electron map. (d) C KLL Auger electron map. (e) O KLL Auger electron map. The maps show the cracks clearly generated during the cooling stage of synthesis.