Electronic Supplementary Information

An NIR-Sensitive Layered Supramolecular Nanovehicle for Combined Dual-Modal Imaging and Synergistic Therapy

Shanyue Guan,^{†a} Yangziwan Weng,^{†a} Mengnan Li,^c Ruizheng Liang,^{*b} Chenghua Sun,^{*a} Xiaozhong Qu^{*c} and Shuyun Zhou^a

- a. Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- b. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
- c. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China.
- * Corresponding authors.

Email: quxz@iccas.ac.cn (X. Q.); sunchenghua@mail.ipc.ac.cn (S.Z.);

liangruizheng2000@163.com (R.L.)

Sample	Chemical Composition	$\frac{Mg^{2+}}{/Al^{3+}}$
Gd-LDH	Mg0.581Al0.366Gd0.053(OH)2	1.59
DOX/Gd-LDH	$Mg_{0.602}Al_{0.356}Gd_{0.032}(OH)_2 DOX_{0.00905}$	1.69
ICG/Gd-LDH	Mg0.674Al0.312Gd0.029(OH)2ICG0.024SDS0.0127	2.16
ICG-DOX/Gd- LDH	Mg0.641Al0.312Gd0.025(OH)2 ICG0.0192DOX0.0153 SDS0.0104	2.05

Table S1. Chemical compositions of various composites.

Figure S1. FTIR spectra of SDS and ICG-DOX/Gd-LDH, respectively.

Figure S2. HRTEM images and lattice of the ICG-DOX/Gd-LDH.

Figure S3. Particle size distribution of ICG-DOX/Gd-LDH determined by dynamic lighting scatting analyzer (DLS).

Figure S4. Stability test of ICG, ICG/Gd-LDH and ICG-DOX/Gd-LDH under the room temperature for 15 days.

Figure S5. Zeta potential of ICG/Gd-LDH and ICG-DOX/Gd-LDH, respectively.

Figure S6. Zeta potential of ICG-DOX/Gd-LDH at various pH values.

Figure S7. Cumulative DOX release from ICG-DOX/Gd-LDH under a simulant physiological condition (PBS buffer solution, pH=7.4) with and without NIR irradiation.

Figure S8. The confocal imaging photographs of ICG-DOX/Gd-LDH incubated with Hela cells for 3h with and without NIR irradiation.

Figure S9. Fluorescence intensity of Gd-LDH, and ICG-DOX/Gd-LDH under dark and irradiation.

Figure S10. Fluorescence imaging of KB cells and HepG-2 cells incubated with ICG-DOX/Gd-LDHs, respectively.

Figure S11. Confocal fluorescence images of Hela cells incubated ICG-DOX/Gd-LDH for 3h, 6h and 12 h, respectively.

Figure S12. ROS images inside Hela cells with the incubation with ICG and ICG-DOX/Gd-LDH after the NIR irradiation for 10 mins.

Figure S13. Time series of ROS images inside Hela cells after treatment with various samples under NIR irradiation therapy.

Figure S14. Time series of changes in the related ROS levels after treatment with various samples under NIR irradiation therapy.

Figure S15. (a) Viability of Gd-LDH incubated with Hela cell for 24 h and 48 h. (b) The viability of ICG/Gd-LDH (b) DOX/Gd-LDH (c) and ICG-DOX/Gd-LDH under dark and irradiation. The laser group were irradiated at 808 nm with the power of 1 W/ cm².

Figure S16. H&E-stained organs isolated from tumor bearing mice treated by ICG-DOX/Gd-LDH formulation.

Figure S17. UV-vis diffuse reflectance spectra of Gd-LDH.