The effect of PEGylated Hollow Gold Nanoparticles on Stem Cell Migration. Potential Application in Tissue Regeneration M. Mar Encabo-Berzosa ^{a, b}, Maria Sancho-Albero ^{a, b}, Alejandra Crespo^c, Vanesa Andreu ^{a, b}, Victor Sebastian ^{a, b}, Silvia Irusta ^{a, b}, Manuel Arruebo ^{a, b}, Pilar Martín Duque^c, Jesus Santamaria ^{a, b} ^aDepartment of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain. ^bNetworking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain. ^cUniversidad Francisco de Vitoria, Facultad de Ciencias Biosanitarias, Carretera Pozuelo a Majadahonda, Km 1.800, 28223 Pozuelo de Alarcón, Madrid, Spain ^{*}Corresponding author: arruebom@unizar.es ## **Supporting information** **Figure S1.** Intracellular location of HGNPs inside MSCs corroborated by confocal laser scanning microscopy. Orthogonal projections demonstrate the intracellular localization of the nanoparticles. Red: nanoparticles, green: actin fibers, blue: nuclei. **Figure S2.** Specific differentiation staining of differentiated MSCs incubated with or without PEG-HGNs. **Figure S3.** Cell proliferation on different scaffolds during 24 h. An AlamarBlue® assay was performed in order to evaluate the capacity of the cells to proliferate inside the scaffold.