Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Stable Ultra-Fast Broad Bandwidth Photodetectors based on

α-CsPbI₃ Perovskite and NaYF₄:Yb,Er Quantum Dots

Xisheng Zhang^{1,#}, Qian Wang^{1,#}, Zhiwen Jin^{1,*}, Jingru Zhang¹, and Shengzhong (Frank) Liu^{1,2,*}

[#]These authors contributed equally to this work

¹Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China. E-mail: jinzhiwen@snnu.edu.cn, liusz@snnu.edu.cn

²Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng 044000, China.

³Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

Keywords: photodetector, α-CsPbI₃, quantum dot, NaYF₄:Yb,Er, stability

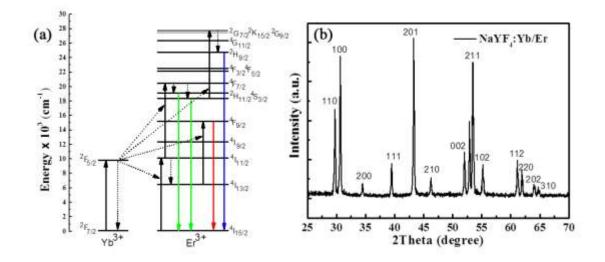


Figure S1 (a) Energy level diagram of Ln^{3+} (Yb³⁺, Er^{3+}), (b) XRD patterns of 2.0 mol. % Er^{3+} , 20 mol. % Yb³⁺ co-doped NaYF₄.

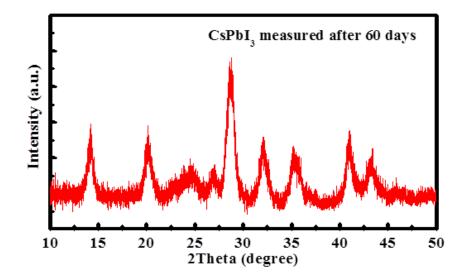


Figure S2 XRD patterns of α -CsPbI₃ QDs after 60 days.

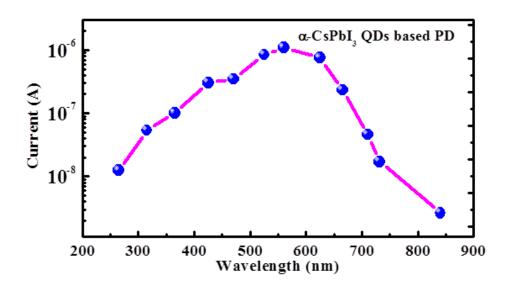


Figure S3 Photocurrent spectrum of the α -CsPbI₃ QDs based PD.

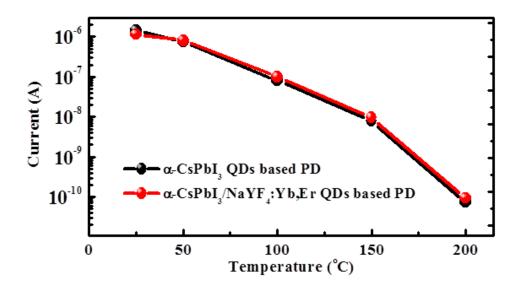


Figure S4 Photocurrent as a function of annealing temperature for α -CsPbI₃ QDs based PD and α -CsPbI₃/NaYF₄:Yb,Er QDs based PD.