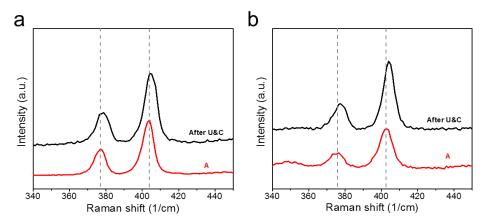

Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Fig. S1 Detailed experimental set-up for lithium electrochemical intercalation process of five different button cells, with MoS₂ acting as cathode and lithium plate as anode respectively.


Fig. S2 The Raman vibrational diagrams of dT- (a) and 2H-MoS₂ (b) respectively. The three peaks located at 196, 223, 350 cm⁻¹ in (a) are the Raman peaks of dT-MoS₂, while the peaks at 383, 406 and 32 cm^{-1} in (b) are the Raman peaks of 2H-MoS₂.

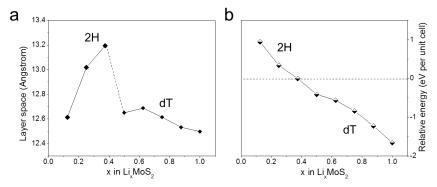

Fig. S3 Raman fingerprints of pristine MoS₂ powder and complete lithium intercalated MoS₂ with discharge potential at 0.9 V by 457 nm excitation laser. The two peaks located at 223, 350 cm⁻¹ (marked with dashed lines) are the Raman feature peaks of dT MoS₂.

Fig. S4 High frequency (a) and ULF (b) Raman spectra of pristine MoS_2 powder and withdrawn MoS_2 cathodes in Figure 1a after ultrasonication and centrifugation four times.

Fig. S5 Raman spectra comparison respecting $E_{2g}^{\ 1}$ and A_{1g} modes between the just withdrawn MoS₂ cathodes after being washed and the one after ultrasonication and centrifugation four times.

Fig. S6 Layer space evolution (a) and relative energy per unit cell (b) in Li_xMoS₂ with different Li⁺ concentrations by the first-principles calculations.

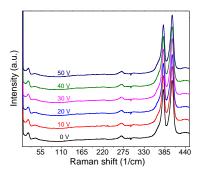


Fig. S7 Raman spectra of bilayer 2H-MoS $_2$ with applied gate voltages at 10 V, 20 V, 30 V, 40 V and 50 V respectively.

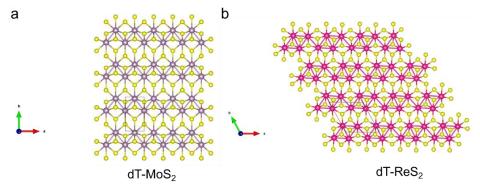


Fig. S8 Atomic structures of the top views for $dT\text{-}MoS_2$ and ReS_2 monolayer.