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Compositional characterization: Energy dispersive X-ray (EDX)

Table S1. The atomic % values of Bismuth and tellurium according to the EDX analysis of 

bismuth telluride nanowires templates of 300 nm, 52 nm, 45 nm and 25 nm. 

Diameter of Bi2Te3 nanowires Atomic % Bismuth Atomic % Tellurium Formula

300 nm 38 ± 2 62 ± 2

52 nm 40 ± 2 60 ± 2

45 nm 39 ± 2 61 ± 2

25 nm  41± 2  59± 2

Bi2Te3

Structural characterization: X-Ray diffraction patterns

The crystallinity of the four samples was investigated the X-ray diffractrograms which are 

showed in Figure S1. The strongest diffraction peak is (1 1 0), which is located at 41.148 º. The (3 0 0) 

peak is also found at 74.955 º. The samples also show the (2 2 0) at 89.278 º showing that the wires show 

a high preferential orientation along [1 1 0]. Therefore, the c-axis is perpendicular to the nanowire long 
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direction in all the cases. The grain size was estimated to be ~10 μm. Since boundary scattering limit the 

phonons with mean free path larger than the wire diameter (D<<10μm), the estimated grain size does not 

affect the thermal conductivity of the present samples.
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Figure S1. X-ray diffractograms of the bismuth telluride nanowire templates of 300nm, 52nm, 45nm and 

25 nm. The c-axis of the Bi2Te3 structure is perpendicular to the nanowire axis.

Mechanical polishing 

Bi2Te3 nanowires embedded in alumina templates were polished by mechanical polishing 

in order to remove any overgrown structure and achieve a flat surface with the tips of the 

nanowires at the alumina surface level. The polish process was carried out by gluing the sample 

to the center of a polishing holder while a constant pressure from its own weight was applied. A 

continuous spinning at low revolution per minute (rpm) was employed to avoid cracks or damage 



in the composite. A polishing cloth along with alumina powders of different particle size, 1 µm, 

0.5 µm and 0.03 µm, were used. The size of the alumina particles were gradually reduced from 

1µm to 0.03 µm in such a way that a final roughness of less than 20 nm was achieved.

Photoacoustic technique

The thermal conductivity of the NWs embedded into the matrix could be measured by the 

PA technique. The thermal conductivity measurements of the nanowire embedded in the AAO 

matrix are performed by evaporating 80 nm titanium layer onto the surface where the gold was 

previously deposited in order to absorb the laser beam. The gold layer was studied to not 

influence the measurement as it can be considered as a part of the thermal contact resistance 

between the titanium and the alumina membrane. The experimental data obtained is used to 

obtain the composite thermal conductivity by means of the theoretical model proposed by Hu et 

al 1.



Figure S2. Data fitting of the experimental data obtained by the PA technique for the 30 nm 

nanowires embedded into the alumina membrane. 

As an example, Figure S2 shows the fitted experimental data for the 25.nm sample. The 

uncertainty analysis of this type of structures can be found elsewhere2.

Scanning Thermal Microscopy (SThM)

The thermal conductivity measurements of some of the Bi2Te3 NWs were carried out 

using a scanning thermal microscope (SThM) working in 3ω mode.

The SThM has been successfully used to measure the thermal conductivity of films, 

nanowires 3 4 5 6 7 or nanomeshes8. An atomic force microscope (AFM) from Nanotec® 

Company and a Wollaston thermoresistive probes from Bruker® were used to carry out the 

thermal scans on the samples. We summarize the working procedure, which is explained in detail 

in reference 3 .

In order to measure the thermal conductivity of the nanowires arrays with the SThM, a 

Wollaston thermo-resistive probe was brought into contact with the sample and measured the 

3ω-voltage in several locations. Then, from studying several location of the sample, similar to 

the statistical analysis presented in reference 3, the equivalent thermal resistance of the sample 

can be determined. This equivalent thermal resistance can be expressed in two terms6 7,

𝑅𝑒𝑞 = 𝑅𝐶 + 𝑅𝑐𝑜𝑚𝑝



where Rcomp, is the thermal resistance of the composite, i.e. the Bi2Te3 nanowires and the 

alumina at which they are embedded, while, , is the contact resistance between the probe and 𝑅𝐶

the sample surface. As the contact resistance was determined from the calibration of the probe, 

the composite thermal resistance can be calculated from the previous equation. Then, due to the 

long length of the NWs (around 30 µm) and because of the thermal exchange radius of the probe, 

b, is also known from the calibration process, the semi-infinite medium theory can be used to 

obtain the thermal conductivity of the composite,  , 6 7 𝑘𝑐𝑜𝑚𝑝

𝑅𝑐𝑜𝑚𝑝 =
1

4𝑘𝑐𝑜𝑚𝑝𝑏

Finally, in order to determine the thermal conductivity of the intrinsic nanowire, the 

effective medium theory can be used.

The calibration 3 of the probe is essential to determine quantitatively the thermal 

conductivity of the sample. The thermal exchange radius, b, and the contact resistance, Rc, 

between the probe and the sample are obtained from this process. As explained in ref. 3, when the 

thermal conductivity of the sample measure remains between 0.1 W/K·m and ~3 W/K·m, the 

thermal exchange radius and contact resistance remains the same.  A set of calibrating samples 

with well-defined thermal conductivity in this range were measured, as explained in ref 3. The 

calibration samples were made of polyaniline (PANI) with 5% and 7% graphene platelets and a 

borosilicate glass with thermal conductivities of k=0.49 W/K·m, k=0.65 W/K·m and k=1.1 

W/K·m, respectively. Since the thermal conductivity of these sample is known, the contact 

resistance vs the thermal exchange radius resulting from iteration methods can be plotted, as 

explained in ref 3. Figure S3 shows the crossing between those curves, resulting in a value of 



b=(2.27±0.09) µm and Rc= 29365±6925 (K/W). The probe convection coefficient was 

determined to be, h=3324 W/K·m2. Two more samples with well know thermal conductivities 

(tellurium, k=0.75W/Km and silicon germanium k=1.2W/Km) were also measured as a cross 

check, resulting in good agreement. This probe has been also used to measure SiGe 

nanomeshes8.

Figure S3. Thermal exchange radius vs contact resistance graph obtained during the calibration 

process for the Wollaston probe used.

Data analysis

As explained along the manuscript, the SThM was mainly used to support the trend observed by 

the PA technique. In Table S2, the measurements obtained from the SThM and the PA technique 

are shown. The good agreement observed for both technique for the 45nm diameter sample, 



within the uncertainty, suggests that the measurements obtained from PA are reliable and that the 

trend is correct. Although other Bi2Te3 nanowires were measured with the SThM, their 

composition varied slightly respect to the proper one and were not considered in this analysis.

Table S2. Summary of the thermal results obtained for different [110] stoichiometric Bi2Te3 
diameter nanowire arrays measured by different techniques. All of the measurements are done in 

the out-of-plane direction. Sample 45 nm was measured by both techniques for comparison.

NW

Diameter

average

(nm)

Crystalline 
Orientation

Thermal 
conductivity 

composite

(W/K·m)

Technique
Porosity

(%)

Calculated 
Filling 
factor

±5 % 

(%)

Thermal 
conductivity 

[110]

Bi2Te3 NWs 
and film

(W/K·m)

300±75 [110] 1.52±0.20 SThM 49±5 97 1.78±0.46

52±5 [110] 1.06±0.09 PA 35±2 79 0.72±0.37

45± 4 [110]
1.09±0.10

1.07±0.10

PA

SThM
28±2 85

0.58±0.47

0.50±0.47

25±4 [110] 0.83±0.05 PA 34±4 70 0.52±0.35

The thermal conductivity composite uncertainty was obtained differently for each technique. In the case 

of the PA technique, the procedure to calculate the composite thermal conductivity could be found 

elsewhere 2. For the SThM technique, the procedure to determine the thermal conductivity of the 

measured sample can be found in 3.

Once the thermal conductivity composite was obtained, the nanowire thermal conductivity was calculated 

by means of the effective medium theory described by Equation 3. In order to calculate the associated 

uncertainty, we carried out the propagation of errors given by:

Δ𝑧 =
𝑁

∑
𝑖 = 1

( ∂𝑧
∂𝑌𝑖

Δ𝑌𝑖)2  



Where z is the magnitude whose uncertainty is calculated and Yi is each of the magnitudes involved in the 

calculation of the nanowire thermal conducivity, i.e., porosity, composite thermal conductivity, alumina 

thermal conductivity and filling factor. Table S2 shows that the uncertainties associated to the PA and 

SThM measurements are ~10% maximum. However, the final value of the thermal conductivity of the 

nanowires or lattice thermal conductivity is much larger. This is consequence of taking into account all 

the possible error sources that contribute to the uncertainty, i.e. the thermal conductivity of the alumina 

template, porosity, electrical conductivity, etc. Despite having a large error, the clear trend observed for 

the thermal conductivity, the fact that the ends of the experimental error bars follow a similar trend and 

the fact that an independent technique (SThM) obtains similar results (see Table S2) demonstrate that the 

data measured is accurate.

Kinetic Collective Model (KCM)

The Kinetic-Collective model is in the framework of the Boltzmann transport equation as 

a generalization of the Guyer-Krumhansl model including the effects of the dispersion 9 10.  This 

model incorporates the role of normal scattering in the current footing. Although normal 

scattering is a non-resistive process, its presence has a deep effect on thermal conductivity due to 

the distribution of energy that generates. When normal scattering is not important, thermal 

conductivity can be calculated with the usual kinetic expression, that is

𝜅𝑘 = ∫𝑐𝑣𝜔𝑣2
𝜔𝜏𝜔𝑑𝜔

where cv is the mode specific heat, υ the velocity and τ the total relaxation time. The total 

relaxation time is obtained by combining using the Mathiessen rule only the resistive scattering 

times, that is, umklapp, impurity and boundary.



𝜏 ‒ 1
𝜔 = 𝜏 ‒ 1

𝐵𝜔 + 𝜏 ‒ 1
𝐼𝜔 + 𝜏 ‒ 1

𝑈𝜔

All the three scattering times are calculated and does not contain any fitting parameter. 

For the boundary term we use

𝜏 ‒ 1
𝐵𝜔 =

𝐷
𝑣𝜔

where L is the diameter of the wire, and for the impurity 

𝜏 ‒ 1
𝐼 = 𝐷·𝜔4

with D=γ·V/(4·π·υ3) where γ is the mass variance, V the atomic volume and υ the phonon 

velocity.

In this case, each mode contributes independently to the rest of the distribution. That it 

means that the presence of a large scattering in one mode does not affect the propagation of the 

rest of the modes. 

When normal scattering becomes important, this behavior is significantly changed. 

Despite its non-resistive nature, normal scattering redistributes energy over all the modes and 

homogenize the distribution. If a mode is highly affected by some scattering mechanism, normal 

scattering will refill that mode with energy coming from the rest of the distribution. That means 

that the scattering suffered by this mode will be noticed by the rest of the modes due to the 

connection provided by normal scattering. When normal scatteting is dominant 

𝑘𝑐 = ∫𝑐𝑣𝜔𝑣2
𝜔𝜏𝑐𝑑𝜔

where , the collective relaxation time, is the averaged inverse relaxation time over all the 𝜏𝑐

modes of the distribution 



𝜏𝑐 =
∫𝑐𝑣𝜔𝑣2

𝜔𝑑𝜔

∫𝑐𝑣𝜔𝑣2
𝜔

𝜏𝜔
𝑑𝜔

The physical interpretation of this change in the relaxation time depending on the 

presence of normal scattering can be understood by a simple equivalence. Kinetic regime is like 

combining electrical resistors in paral·lel and collective regim like combine them in series. In the 

kinetic regime, each model notice a different resistance, while in the collective regime it notice 

all the resistances. By this equivalence it can be understood the average of the inverse of the 

relaxation times. 

This model has been used to obtain the thermal conductivity of bulk and nanostructures, 

such as nanowires, and understand the reduction due to the dimensionality as a change from 

collective to kinetic regime. As a consequence, two different thermal transport regimes could be 

established, i.e. the kinetic and the collective, which depend on what scattering mechanism 

(resistive or normal) is dominating the transport. While in the kinetic regime each phonon 

contributes independently to the heat flux, in the collective regime the momentum is conserved 

and shared among the phononic modes (the phonons behave as a whole). The Kinetic-Collective 

model can be applied to any range of temperature and provide a new insight into the underlying 

physics of thermal transport, introducing thermodynamic perspective at mesoscopic level that 

allows the interpretation of the differences in phonon behavior in terms of the average of the 

phonon-phonon processes.

First principles simulation details

Bi2Te3  thermal conductivity from first principles have been obtained under the Density 



Functional Theory (DFT) using the VASP package 11 12 13 14 in the Local Density Approximation 

(LDA). LDA pseudopotentials in the parametrization of Perdew and Zunger  are used 15. Plane 

waves are cut off at 300 eV. For the simulations a 3x3x1 supercell with 135 atoms obtained from 

the 15-atoms hexagonal cell is used.  Dispersion relations (DR), Density Of States (DOS) and 

harmonic and anharmonic Interatomic Force Constants (IFC) have been calculated in a 3x3x2 k-

point grid.

To obtain Normal and Umklapp Bi2Te3 three phonon scattering relaxation times we used 

Phono3py 16 with the IFC obtained from VASP. The manual implementation of the splitting of 

Normal and Umklapp processes is done according to the crystalline momentum conservation, 

where for Normal processes k1=k2+k3 (or k1+k2=k3) and for Umklapp processes k1=k2+k3+G (or 

k1+k2=k3+G), being G a reciprocal grid vector. The latter have been calculated in a 24x24x8 k-

point grid. Figure S4 shows the obtained Normal and Umklapp relaxation times.
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Figure S4. Normal and Umklapp relaxation times in terms of frequency at 300K.



References

1 H. Hu, X. Wang and X. Xu, J. Appl. Phys., 1999, 86, 3953.

2 B. Abad, J. Maiz and M. Martin-Gonzalez, J. Phys. Chem. C, 2016, 120, 5361–5370.

3 A. A. Wilson, M. Muñoz Rojo, B. Abad, J. A. Perez, J. Maiz, J. Schomacker, M. Martín-
Gonzalez, D.-A. Borca-Tasciuc and T. Borca-Tasciuc, Nanoscale, 2015, 7, 15404–15412.

4 J. Maiz, M. Muñoz Rojo, B. Abad, A. A. Wilson, A. Nogales, D.-A. Borca-Tasciuc, T. 
Borca-Tasciuc and M. Martín-González, RSC Adv., 2015, 5, 66687–66694.

5 M. Muñoz Rojo, O. Caballero Calero,  a F. Lopeandia, J. Rodriguez-Viejo and M. Martín-
Gonzalez, Nanoscale, 2013, 5, 11526–44.

6 M. Muñoz Rojo, J. Martín, S. Grauby, T. Borca-Tasciuc, S. Dilhaire and M. Martin-
Gonzalez, Nanoscale, 2014, 6, 7858–7865.

7 M. Muñoz Rojo, S. Grauby, J.-M. Rampnoux, O. Caballero-Calero, M. Martin-Gonzalez 
and S. Dilhaire, J. Appl. Phys., 2013, 113, 54308.

8 J. A. Pérez-Taborda, M. Muñoz-Rojo, J. Maiz, N. Neophytou and M. Martín-González, 
Sci. Rep., 2016, 6, 32778

9 C. De Tomas, A. Cantarero, A. F. Lopeandia and F. X. Alvarez, J. Appl. Phys., 2014, 115, 
0–11.

10 C. de Tomas, A. Cantarero,  a F. Lopeandia and F. X. Alvarez, Proc. R. Soc. A Math. 
Phys. Eng. Sci., 2014, 470, 20140371–20140371.

11 G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558–561.

12 G. Kresse and J. Hafner, Phys. Rev. B, 1994, 49, 14251–14269.

13 G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15–50.

14 G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169–11186.

15 J. P. Perdew and A. Zunger, Phys. Rev. B, 1981, 23, 5048–5079.

16 A. Togo, L. Chaput and I. Tanaka, Phys. Rev. B - Condens. Matter Mater. Phys., 2015, 91, 
094306.


