Supporting information for

Dynamically Tuning Near-infrared-induced Photothermal Performances

of TiO₂ Nanocrystals by Nb-doping for Imaging Guided Photothermal

Therapy of Tumors

Nuo Yu,^a Yong Hu,^b Xiaoyong Wang,^c Gang Liu,^c Zhaojie Wang,^a Zixiao Liu,^a Qiwei Tian,^d Meifang Zhu,^a Xiangyang Shi^{*,b}, Zhigang Chen^{*, a}

^aState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

E-mail: zgchen@dhu.edu.cn

^bCollege of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.

E-mail: xshi@dhu.edu.cn

^cCenter for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China

^dShanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China

Fig. S1 HR-TEM images and the corresponding FFT patterns of the pure TiO_2 and Nb-doped TiO_2 samples.

Fig. S2 SAED pattern of $Nb_{0.12}$ -TiO₂ sample.

Table S1. The detail pea	k positions for th	e fitted peaks.
--------------------------	--------------------	-----------------

	<u> </u>								
Samples	Ti ⁴⁺ 2p3/2	Ti ⁴⁺ 2p1/2	Eg	Ti ³⁺ 2p3/2	Ti ³⁺ 2p1/2	Eg	Nb⁵+ 3d5/2	Nb⁵+ 3d3/2	Eg
Nb _{0.155} - TiO ₂	459.25	464.9	5.65	456.9	462.5	5.6	207.1	209.9	2.8
Nb _{0.12} - TiO ₂	459.2	464.9	5.7	456.8	462.4	5.6	206.84	209.64	2.8
Nb _{0.09} - TiO ₂	459.05	464.7	5.65	456.5	462.2	5.7	206.85	209.65	2.8
TiO ₂	458.6	464.3	5.7	/	/	/	/	/	/

Fig. S3 Nb 3d spectra of Nb-doped TiO₂ samples.

Fig. S4 The curves of temperature elevation (ΔT) and Nb/(Nb+Ti) atomic ratios (determined by ICP-AES and XPS) of TiO₂ samples as a function of Nb precursor ratios.

Fig. S5 (a) UV-vis-NIR spectrum of Nb_{0.12}-TiO₂-PEG aqueous dispersion. The inset shows Nb_{0.12}-TiO₂-PEG nanocrystals in different solvent (water, saline, DMEM, FBS) after being stored for one week. (b) TEM image of Nb_{0.12}-TiO₂-PEG.

Figure S6. Representative photos of tumors on mouse after treatment with different therapeutic conditions.

Fig. S7 The hemolytic percent of RBCs incubated with Nb0.12-TiO2-PEG at various concentrations (0.05, 0.1, 0.2, 0.4, 0.6 g L⁻¹) for 4 h, using deionized water (+) and PBS (–) as positive and negative controls, respectively. Inset showing the photograph for direct observation of hemolysis.