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S1.  CNF Resonator with High Q 

Here we show an example of a carbon nanofiber (CNF) resonator with slightly higher Quality 

(Q) factor.  Figure S1 shows the measured thermomechanical motion, and for this device, we 

find the resonance frequency of f5.945MHz with the Q of 760, achieving figure of merit of 

fQ=4.5109Hz. 
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Figure S1. Measured thermomechanical motion of the CNF with f5.945MHz and Q760.  

Scale bar is 300nm.   

 

S2.  Cantilever with Pinned-Free Boundary Condition 

In this section, we show detailed multimode resonance behaviors of CNF cantilevers.  Flexural 

resonance motions of the cantilever with pinned-free boundary conditions (Zn(0)=d2Zn(0)/dx2=0, 

and d2Zn(1)/dx2=d3Zn(1)/dx3=0) are given by  
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where, n is the mode dependent parameters (e.g., 1=3.927, 2=7.069, and 3=10.210), x is the 

normalized cantilever position by length (0x1).  Using Eq. S1, we plot resonance motions of 

the 1st, 2nd, and 3rd modes (Fig. 2(a-c)) from the CNF.  We note that the fundamental resonance 

mode shape of a conventional clamped-free cantilever does not exist in the one with the pinned-

free boundary conditions (because it transforms to rigid body rotation (0=0 thus f=0Hz)).   
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Figure S2. Calculated resonance mode shapes of a CNF cantilever with pinned-free boundary 

conditions.  (a-c) 1st, 2nd, and 3rd resonance mode shapes.  (d-f) Calculated resonance frequency 

of the CNF (L=5m, d=50nm) with the Pt particle (diameter of d=50nm) mass loading.  Location 

of the Pt particle is varied from x=0 to x=1 during calculation.   

 

 

 



-4- 

S3.  Effective Mass and Multimode Resonance Frequencies of CNFs 

Based on the mode shapes of the cantilever with the pinned-free boundary conditions, we 

calculate the effective masses for their flexural resonance motions.  The normalized mode shapes 

can be determined by 

  ( )
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n
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Z x
u x

Z
 ,         (S2) 

where, Zn(1) is the displacement at the free end cantilever where the displacement is maximum.  

The effective mass can be determined as 

 
1 2

eff,CNF, 0n nM M u x dx  .        (S3) 

Here M is the mass of the cantilever.  By putting n into Eqs. S1S3, we calculate the effective 

mass of the 13 resonance modes to be Meff,CNF,1=0.2498, Meff,CNF,2=0.2498, and 

Meff,CNF,3=0.2501.   

Based on the calculated effective mass, we explore an analytical equation for estimating 

multimode resonance frequencies of the CNF resonators.  The multimode resonance frequencies 

of the cantilever are determined by  
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where L is the length of the cantilever, EY is the Young’s modulus, I=d4/64 is the moment of 

inertia,  is the density, A=d4/4 is the cross-section area, and d is the diameter of the cantilever.  

In our CNF resonator, we cannot use Eq. S4 for calculating resonance frequency since there is a 
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Nickel (Ni) catalyst on the tip of the CNF.  Instead, we modify Eq. S4 to the cantilever with a 

proof mass on its tip using f=1/2(keff/(Meff,CNF+Meff,Ni))1/2, where Meff,Ni is the effective mass of 

Ni catalyst.  The Ni catalyst is the tip of CNF resonators where the CNF has maximum 

displacement, thus the effective mass of Ni catalyst is same as its mass (Meff,Ni=MNi).  Eq. S4 can 

be modified to  
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where C is 1.5.  If the shape of the Ni catalyst is assume to be sphere, we can rewrite Eq. S5 to  
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where CNF is the density of the CNF, Ni is the density of the Ni catalyst.  Based on Eq. S6, we 

calculate frequency scaling of the CNF cantilever with respect to its diameter (see Fig. S3(a)).  

We also have examined clamped-free boundary conditions.  In the clamped-free conditions, the 

CNF resonator shown in Figs. 3(c-d) in main text exhibits EY600GPa which disagrees with the 

expected Young’s modulus of the CNF with the its graphene angle.  Instead, we find EY=32GPa 

using Eq. S6, which agrees with previously reported results. 1   For calculation, we use 

EY=32GPa, and L=5m.  Also by replacing diameter to cross-sectional area (A), d=2(A/)1/2, 

frequency scaling over cross sectional area of the CNF can be obtained (see Fig. S3(b)).  The 

results reveal that larger diameter and cross sectional area of the CNF yield higher resonance 

frequency.   
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Eq. S5 also demonstrates that compared with the resonance mode spacing in the conventional 

clamped-free cantilever (f2/f1=6.26, f3/f2=2.80), those in the pinned-free structure (f2/f1=3.24, 

f3/f2=2.09) has richer higher-order modes within narrower frequency bands.  This enhanced 

number of the higher-order modes is particularly suitable for sensing applications, since they 

have been pursued for multimode sensing of nanoparticles and molecules for achieving precise 

yet enhanced mass sensitivity.2,3 
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Figure S3. Frequency scaling of a CNF cantilever (L=5m) via diameter and cross-sectional 

area engineering.   
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S4.  Frequency Scaling of CNFs in Tapered Geometry 

Here, we investigate effects of a tapered geometry on the resonance characteristics.  Figure S4 

shows simulated frequency scaling of the CNF resonator (L=5m, and d=50nm) using finite 

element method (FEM).  To make the tapered geometry, we varies the diameter at the tip of the 

CNF a=550nm (see Fig. S4(a)) and explore resonance frequencies of the 1-3 modes.  The 

results show that resonance frequencies of 2nd and 3rd modes are decreased as a/d becomes 

smaller, while that of the 1st mode is less sensitive to the tapered geometry, leading to smaller 

frequency spacing between each mode.  Also, these findings are consistent with our measured 

results of reduced mode spacing as shown in the main text.   
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Figure S4. Frequency scaling of a CNF resonator (L=5m and d=50nm) with tapered geometry.  

Diameter at the tip of the CNF, a is changed from 5nm to 50nm during simulation.   

 

S5.  Localized Mass Loading on CNFs in Different Location 

In this section, we investigate effects of localized mass loading on the CNF cantilever.  Similar 

to our experiment that localized platinum (Pt) particle deposition on the CNF resonators in the 
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SEM, we assume a sphere Pt particle is located on the surface of the CNF cantilever.  As we 

discussed in the previous section, the effective mass of the Pi particle depends on its location and 

corresponding displacement of the CNF resonator, thus it can be calculated by 
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where, MPt is the mass of the Pt particle, and ZPt,n(x) is displacement of the CNF cantilever where 

the Pt particle is located.  By adding Eq. S7 to Eq. S5, the resonance frequency of the Pt particle 

loaded CNF cantilever is  
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For calculation, we assume that Pt particle is located on the CNF resonator with L=5m and 

d=50nm.  Then we calculate the resonance frequency by changing the location of the Pt particle 

from the root to the tip of the CNF.  Figures S2(d-f) show the calculated resonance frequencies 

with the Pt particle mass loading, showing the frequency shifts strongly depend on the location 

of the Pt particle.  Importantly, when the particle is located on the nodal point of the resonance 

mode where the displacement is minimum, resonance frequency is almost invariant.  To address 

this challenge and predict accurate mass loading effects for achieving reliable resonant mass 

sensors, multimode mass sensing has been pursued.1,2  Although the location and the mass of the 

mass loading on the resonator are unknown, both unknown values can be obtained by measuring 

multimode frequency shifts: two unknown values can be determined by solving two uncorrelated 

questions.  Employing more resonance modes might further improve accuracy and reliability of 

mass sensing.   
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Unlike conventional clamped-free cantilevers, our CNF resonators provide richer resonance 

modes in narrower frequency range (See Fig. S4) thanks to the unique pinned-free boundary 

conditions and the tapered geometry.  Certainly, these unique properties are great advantages 

over semiconductor nanowire and carbon nanotube (CNT) resonators, exhibiting the promise of 

CNF resonators for mass sensing application.   

We explore linearity of frequency shift due to mass loading.  Using Eq. 8, we vary mass of 

MPt from 0 to 10fg and calculate frequency of the first mode of the CNF (L=5m, d=50nm, and 

EY=32GPa).  We assume the mass is uniformly distributed on the resonator thus 

Meff,Pt,10.25MPt.  As shown in Fig. S5, frequency shift is quite linear below 10fg mass loading if 

resonance characteristics including effective stiffness and mode shape are unaffected by mass 

loading due to Meff,Pt,n<<Meff,CNF,n.   
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Figure S5. Frequency shift of a CNF resonator (L=5m and d=50nm) with varying amount of 

mass loading.   
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S6.  Photothermal Excitation 

The mechanical motion of the resonators can be expressed by   

0 eff ext

eff eff

k F
z z z

Q M M


    ,        (S9) 

where z is the displacement of the resonator, 0 is the angular resonance frequency, keff is the 

effective spring constant, and Fext is the external driving force.  When we irradiate laser onto the 

device, the substrate and the CNF resonator absorb part of the laser power, resulting in 

temperature elevation.  It generates thermal expansion and thus a photothermal force4 

 405 633extF T T  .         (S10) 

Here,  is the coefficient that converts the device temperature to thermal force.  T633 and T405 are 

the respective temperature increase due to a 633nm CW laser and a 405nm modulated laser 

irradiation.  The photothermal heating due to the 405nm modulated laser (which irradiates on the 

substrate) can be expressed as: 

    405 1 1 405 1 cosT t a c P t    ,       (S11) 

where a1 is absorbance from the incident 405nm laser to the substrate,  is the non-radiative 

recombination rate, c1 is the constant determined by the device structure (such as geometry, 

material, laser position relative to the device, etc.), P405 is the laser power,  is the modulation 

depth controlled by voltage signal from a network analyzer,  is the modulation angular 

frequency of the 405nm laser.  Here, the modulation depth is controlled by output voltage of the 

network analyzer (=0 for 0mV and 1 for 200mV).  When =0 photothermal force can excite 
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resonance motion from thermomechanical motion to driven resonance.  In our measurement, 

with sufficient driving force, the resonance motion of the CNF resonators is excited to ~1.4nm.   

S7.  SEM Characterization for Observing Growth Angle of the CNF    

In this section, we demonstrate optimized SEM imaging conditions for observing angle between 

the graphene layers and the central axis of the CNF.  Since it consists of the many thin graphene 

layers, transmission electron microscopy (TEM) is mainly used for investigating its structure.  

However, TEM characterization requires very careful sample preparation and long measurement 

time.  Here we have developed the optimized SEM imaging conditions for fast characterization 

of the graphene angle in the CNF.  Although conventional SEM imaging such as backscattering 

electron (BSE) and secondary electron (SE) with Everhart-Thornley detector (ETD) and through 

the lens detector (TLD) cannot resolve the angle (see Fig. S6(b-d)), imaging with immersion lens 

and TLD can readily visualize some of the angle (Fig. S6(a)).  From this image, we also notice 

that the graphene angle is mostly uniform from the tip to near the bottom, except the root of the 

CNF.   

(a) (b) (c)
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Figure S6. Cross-sectional SEM images of the CNF.  Images are taken using conditions of (a) 

2kV, immersion lens, and TLD; (b) 5kV, BSE, and TLD; (c) 5kV, SE, and ETD.  Red dot lines 

are guidelines for the graphene angle.  Scale bars are 300nm.   

S8.  Mass Sensitivity in NEMS Resonators 

Here, we analyze mass sensitivity of NEMS resonators.5  When the mass sensitivity, m, is in the 

regime of m<<Meff, and Q and effective spring constant keff is assumed to be insensitive to 

mass loading, mass sensitivity is determined by  

1 eff
0 0

0

2M
m  


   ,        (S12) 

where   is mass responsivity, eff2M  , and 0 is noise floor for frequency measurement 

(i.e., frequency instability).  0 can be obtained by integrating the spectrum density of 

frequency fluctuation,  
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0 π

f
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S d
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where, f is the measurement bandwidth.  With an employed transducer (i.e., displacement 

readout system), the spectrum density of frequency fluctuation can be converted to the voltage 

domain spectrum density,      2

VS S V      , where V    is the frequency to voltage 

conversion rate near the resonance frequency.  By assuming V    is linear, it can be 

approximated to max max 0V V V Q       .  Based on these relations, frequency noise 

floor is then  
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  1 2

0
0

max

2VS f

Q V

 


 .        (S14) 

Here, the ratio of maximum signal to noise floor,   1 2

max 2VV S f   is the voltage domain 

dynamic range (DR) (i.e., linear operation regime) at the resonance due to our assume that 

V    is linear, thus Eq. S14 is then 

 DR/200
0 10

Q

  .         (S15) 

Accordingly, by substituting Eq. S15 to Eq. S12, mass sensitivity is determined by 

 DR/20eff2
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M
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Q
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