Electronic Supplementary Information

Probing lysine mono-methylation in histone H3 tail peptides with an abiotic receptor coupled to a non-plasmonic resonator

N. Bontempi,^a E. Biavardi,^b D. Bordiga,^c G. Candiani,^d I. Alessandri,^a* P. Bergese^c* and E. Dalcanale^b*

^{*a.*} Department of Mechanical and Industrial Engineering, Chemistry for Technologies Laboratory, University of Brescia and INSTM UdR Brescia, Via Branze 38, 25123 Brescia, Italy. E-mail: ivano.alessandri@unibs.it

^{c.} Department of Molecular and Translational Medicine, University of Brescia and INSTM UdR Brescia, Viale Europa 11, 25123 Brescia, Italy. E-mail: paolo.bergese@unibs.it

^{*d.*} Department of Chemistry, Materials and Chemical Engineering "G. Natta, Polytechnic of Milan and INSTM UdR Milano, Via Mancinelli 7, 20131 Milano, Italy

Table of Contents

General methods	S1
Peptide structure and molecular minimization	S2_S6
Titration in Methanol-d ₄ via ³¹ P and ¹ H-NMR	S7-S16

General Methods

¹H and ³¹P NMR spectra were recorded on a Bruker Avance 400 (400 MHz) NMR spectrometer. All ¹H chemical shifts (δ) were reported in parts per million (ppm) relative to proton resonances resulting from incomplete deuteration of NMR solvents. All ³¹P chemical shifts (δ) were reported in parts per million (ppm) relative to external 85% H₃PO₃ set at 0 ppm. All titrations were performed by adding progressive aliquots of a 1•10⁻³ M solution of the peptides in CD₃OD to a 1•10⁻³ M solution (1 mL) of **Tiiii[C₃H₇, CH₃, Ph]** in CD₃OD.

^{b.} Department of Chemistry, Life science and Environmental Sustainability, University of Parma and INSTM UdR Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy. E-mail: enrico.dalcanale@unipr.it

Figure S1. Simulated structure of reference H3 histone PC in ethanol

Figure S2. Simulated structure of Lys4 mono-methylated H3 histone P1 in ethanol

Figure S3. Simulated structure of Lys9 mono-methylated H3 histone P2 in ethanol

Figure S4. Simulated structure of Lys14 mono-methylated H3 histone P3 in ethanol

Figure S5. Simulated structure of Lys4, Lys9, Lys14 mono-methylated H3 histone P123 in ethanol

Figure S6. ³¹P NMR spectra (400 MHz, CD₃OD, 298K) of free Tiiii[C₃H₇, CH₃, Ph] (Tiiii[2], red spectrum), 0.25eq. and 0.5 eq. of P1 added (green and blue spectra) and the 1:1 complex (violet spectrum). $\Delta_{P=O} = -2.65$ ppm.

Figure S7. ¹H NMR spectra (400 MHz, CD₃OD, 298K) of free **Tiiii**[C₃H₇, CH₃, **Ph**] (**Tiiii**[2], red spectrum), 0.25eq. and 0.5 eq. of **P1** added (green spectra), the 1:1 complex (blue spectrum) and the free **P1** (violet spectrum). $\Delta_{N-CH_3} = 3.25$ ppm

Figure S8. ³¹P NMR spectra (400 MHz, CD₃OD, 298K) of free Tiiii[C₃H₇, CH₃, Ph] (Tiiii[2], red spectrum), 0.25eq. and 0.5 eq. of P2 added (green and blue spectra) and the 1:1 complex (violet spectrum). $\Delta_{P=O} = -2.66$ ppm

Figure S9. ¹H NMR spectra (400 MHz, CD₃OD, 298K) of free **Tiiii**[C₃H₇, CH₃, **Ph**] (**Tiiii**[2], red spectrum), 0.25eq. and 0.5 eq. of **P2** added (green spectra), the 1:1 complex (blue spectrum) and the free **P2** (violet spectrum). $\Delta_{N-CH3} = 3.37$ ppm

Figure S10. ³¹P NMR spectra (400 MHz, CD₃OD, 298K) of free **Tiiii**[C₃H₇, CH₃, Ph] (**Tiiii**[2], red spectrum), 0.25eq. and 0.5 eq. of **P3** added (green and blue spectra) and the 1:1 complex (violet spectrum). $\Delta_{P=O} = -2.41$ ppm

Figure S11. ¹H NMR spectra (400 MHz, CD₃OD, 298K) of free **Tiiii**[C₃H₇, CH₃, **Ph**] (**Tiiii**[2], red spectrum), 0.25eq. and 0.5 eq. of **P3** added (green spectra), the 1:1 complex (blue spectrum) and the free **P3** (violet spectrum). $\Delta_{N-CH3} = 3.32$ ppm

Figure S12. ³¹P NMR spectra (400 MHz, CD₃OD, 298K) of free Tiiii[C₃H₇, CH₃, Ph] (Tiiii[2], red spectrum), 0.25eq. and 0.5 eq. of P123 added (green and blue spectra) and the 1:1 complex (violet spectrum). $\Delta_{P=O} = -2.92$ ppm

Figure S13. ¹H NMR spectra (400 MHz, CD₃OD, 298K) of free **Tiiii**[C₃H₇, CH₃, **Ph**] (**Tiiii**[2], red spectrum), 0.25eq. and 0.5 eq. of **P123** added (green spectra), the 1:1 complex (blue spectrum) and the free **P123** (violet spectrum). $\Delta_{N-CH_3} = 3.33$ ppm

Figure S14. ³¹P NMR spectra (400 MHz, CD₃OD, 298K) of free Tiiii[C₃H₇, CH₃, Ph] (Tiiii[2], red spectrum), 0.25eq. and 0.5 eq. of PC added (green and blue spectra) and the 1:1 complex (violet spectrum). $\Delta_{P=O} = -0.83$ ppm

Figure S15. ¹H NMR spectra (400 MHz, CD₃OD, 298K) of free **Tiiii**[C₃H₇, CH₃, **Ph**] (**Tiiii**[2], red spectrum), 0.25eq. and 0.5 eq. of **PC** added (green spectra), the 1:1 complex (blue spectrum) and the free **PC** (violet spectrum).