Electronic Supplementary Information

Artificial Hagfish Protein Fibers with Ultra-High and Tunable Stiffness

Jing Fu,^{*a*} Paul A. Guerette,^{*a*} Andrea Pavesi,^{*b*} Nils Horbelt,^{*c*} Chwee Teck Lim,^{*d*} Matthew J. Harrington^{*c*} and A.Miserez^{**a*,*e*}

^a School of Materials Science and Engineering, Nanyang Technological University (NTU),

Singapore 639798

Centre for Biomimetic Sensor Science (CBSS), NTU, Singapore 637553 (Singapore)

Email: ali.miserez@ntu.edu.sg.

^b Biosystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602.

^c Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany.

i i i 2 i, Germany.

^d Department of Biomedical Engineering, National University of Singapore (NUS), Singapore

117575.

Mechanobiology Institute, NUS, Singapore 117411.

^e School of Biological Sciences, NTU, Singapore 637551.

Supporting Figures

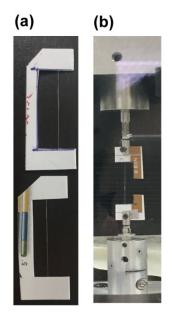


Fig. S1 Photographs of (a) individual fibers fixed on cardboard frames with a gauge length of 20 mm and an average width of 80 μ m; and (b) cardboard frame with an individual fiber mounted on the tester grips and side cut open right before testing.

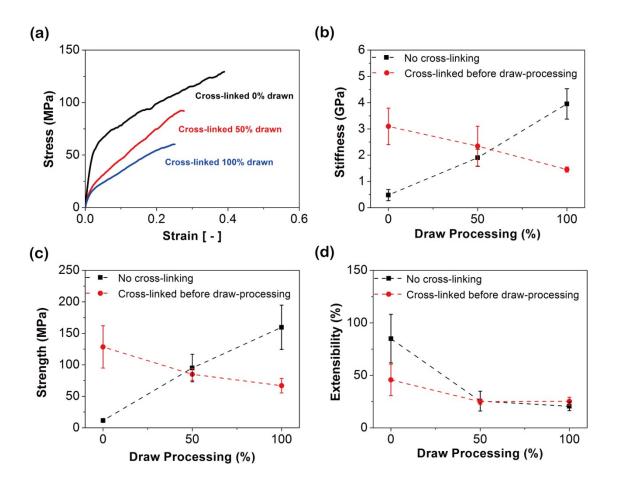
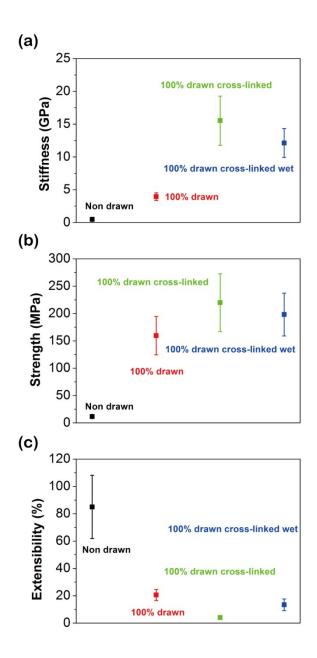



Fig. S2 Tensile behavior and mechanical properties of artificial (rec)EsTK-based fibers. (a) Representative stress-strain curves of fibers cross-linked before draw-processing, strained to failure. All fibers were fully dried. (b) Stiffness versus fiber draw-processing degree. (c) Strength versus fiber draw-processing degree. (d) Extensibility versus fiber draw-processing degree.

Fig. S3 Mechanical properties of artificial hagfish fibers of non-drawn, 100% draw-processed, 100% draw-processed cross-linked and re-hydrated 100% draw-processed cross-linked. (a) Stiffness; (b) Strength; (c) Extensibility.