Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information

$\label{eq:charge storage performances and mechanisms of MnO_2 \ nanospheres, nanorods, nanotubes and nanosheets$

Chan Tanggarnjanavalukul^a, Nutthaphon Phattharasupakun^a, Kanokwan Kongpatpanich^b, and Montree Sawangphruk^{*a}

^aDepartment of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand. E-mail:

montree.s@vistec.ac.th; Fax: +66 (0)33 01 4445; Tel: +66 (0)33 01 4251

^bDepartment of Materials Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand

Fig. S1 2D layered structure of birnessite-type MnO_2 nanosheets intercalated with metal ions (K⁺ or Mg^{2+}) and water molecules.

Fig. S2 CV curves of the as-assembled MnO_2 supercapacitors at different scan rates: (a) α -MnO₂ nanospheres, (b) δ -MnO₂ nanosheets, (c) as-calcined nanosheets, (d) α -MnO₂ nanorods, (e) as-calcined nanorods, and (f) α -MnO₂ nanotubes. Note, 10 mV s⁻¹ (orange), 25 mV s⁻¹ (brown), 50 mV s⁻¹ (green), 75 mV s⁻¹ (purple), and 100 mV s⁻¹ (blue).

Fig. S3 Power's law dependence of log(i) vs. log(v) of δ -MnO₂ nanosheet supercapacitor.

Fig. S4 The plots of $v^{1/2}$ vs. $i(V)v^{1/2}$ of δ -MnO₂ nanosheet supercapacitor.

The calculation details of relaxation time constant (τ_0)

The relaxation time constant can be calculated by the following eq. (S1):

$$\tau_0 = 1/2\pi f_0$$
 (S1)

where f_0 is the resonance frequency determined from the intersection of |P|/|S| and |Q|/|S| plot, |S| is the complex power obtained from active power or real part (|P|) and reactive power or imaginary part (|Q|) as shown in eq. (S2).

$$S(\omega) = P(\omega) + jQ(\omega)$$
 (S2)

The P(ω) and Q(ω) can be calculated from eq. (S3) and (S4), respectively

$$P(\omega) = \omega C''(\omega) |\Delta V_{\rm rms}|^2$$
(S3)

$$Q(\omega) = -\omega C'(\omega) |\Delta V_{rms}|^2$$
(S4)

where $|\Delta V_{rms}|^2 = \Delta V_{max} /\sqrt{2}$ with V_{max} being the maximum amplitude of the ac signal, $C'(\omega)$ is the real part of the complex capacitance, and $C''(\omega)$ is the imaginary part of the complex capacitance. The $C'(\omega)$ and $C''(\omega)$ are given by following equation:

$$C'(\omega) = -Z''(\omega) / \omega |Z(\omega)|^2$$
(S5)

$$C''(\omega) = Z'(\omega) / \omega |Z(\omega)|^2$$
(S6)

where $Z'(\omega)$ and $Z''(\omega)$ are the real and imaginary parts of the complex impedance ($Z(\omega)$), respectively and $\omega = 2\pi f$.

Fig. S5 FE-SEM images of (a) MnO_2 nanosheet powder, (b) MnO_2 nanosheets on positive electrode after cycling stability, and (c) MnO_2 nanosheets on negative electrode after cycling stability.

Elements	Concentration
Mn	14.9%
К	2.18%
Mg	1.26%
Si	695 ppm
F	464 ppm
S	312 ppm
Са	40.3 ppm

Table S1 Elemental composition in Mg-birnessite that coated on CFP materials measured by X-rayfluorescence spectroscopy.