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I. The Calculation of Lorenz Number

The Wiedemann-Franz law shows the electrical thermal conductivity can be shown as
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in which,  and are the electrical conductivity and temperature, respectively.  is the  T L

Lorenz number and can be obtained

,
22

2 1

0 0

3 2bk F FL
e F F

         
     

 

(S2)

with the reduced Fermi energy , we have
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II. The Computation of Effective Band Mass

In order to understand the mechanism that causes the improvement of the electrical 

conductivity, we calculate the effective band mass of the CBM, e.g., Γ point and A point [Fig. 

3]. It is well-known that for an external electrical field the effective mass of a charger carrier 

is defined as

where  and  indicate the reciprocal components, and  is the dispersion relation for i j ( )nE K

the n-th band. Meanwhile, for group III-IV semiconductors, the energy  of the wave ( )nE K

vector  at the band minimum or maximum can be written asK
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Combining Eq. (S1) and (S2), we have

Finally, the effective mass at the conduction band minima is calculated using finite difference 

method [https://github.com/afonari/emc].

III. Electrical Transport Properties of Nanostructures

To calculate the electrical transport properties, the most popular method is adopted, 

which assumes the electronic band structure will be unchanged with doping and only the 

Fermi level is shifted. Then, following the electrical Boltzmann transport theory (BTE), the 

electrical conductivity ( ), electrical thermal conductivity ( ) and Seebeck coefficient ( )  el S

can be written as

where  and  are the Cartesian indices, , , ,  and  are the volume of the unit    e  T 0
F DN 

cell, electron’s charge, the Fermi level, the temperature and the Fermi-Dirac distribution 
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function, respectively.  is the transport distribution function and can be written in the   

form of 

where  is the number of  points sampling, ,  and are the band index, group N K i v el
total

velocity which can be calculated from the band structure and the relaxation time of electrons, 

respectively.

From the equations above, we can find the electron relaxation time is the key point to 

calculate the electrical transport properties. Here, the most popular way, that assumes the 

band structure of the grain is the same to the bulk counterpart 4, 5, is applied. Then, the 

electron relaxation time can be obtained by the Matthiessen’s rule

and

in which, ,  and  are  the inherent electron, electron-surface and electron-grain el
in

el
surf el

GB

boundary (GB) relaxation time, respectively. Here, in our calculations, the inherent electron 

relaxation time is obtained by fitting the experimental results (details can be found in SI 

Section V). The electron-surface or electron-GB relaxation time is computed via momentum 

dependent specularity  which considers the surface or grain boundary roughness by ( )P K

root mean square of roughness ( ). Therefore, we have 
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where 

 

and  are the component of electron group velocity normal and parallel to ( )elv K || ( )elv K

the surface, respectively.  is the angle between the electron wave vector and the direction 

vector of the surface or GB.  and  are the thickness of the membrane and average size of L D

grain. Finally, by averaging the relaxation time over all the reciprocal space, we can find

Then, the Seebeck coefficient, electrical thermal conductivity and power factor for the 

nanostructures can be obtained from Eqs. (S7)-(S9) and Eqs. (S13)-(S17). Here, all the 

nanomembranes in our paper have the (110) surfaces and the root mean square of the surface 

roughness is 0.125 nm, which is determined by various surfaces of Si NWs with different 

orientation (Fig. 5 in Ref. [ 6]). For the GB, we assume it is a very rough surface and will lead 

to , which has been proved to be a quite good approximation (see results of Fig. ( , ) 0P  K

4 in our main text).

IV. Theory to Calculate the Lattice Thermal Conductivity of Nanostructures
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Solving phonon BTE by the relaxation time approximation 7, we can find the modal 

lattice thermal conductivity in the form of

where,  is the group velocity and can be obtained from lattice dynamics 8. The ( , )ph v K

volume specific heat  can be calculated by , in which  and  is ( , )phc K ( , ) / Vph bc k K bk V

the Boltzmann constant and system volume, respectively. For the phonon relaxation time 

, it can be calculated using the Matthiessen’s rule as well( , )ph
tot K

and 

in which , ,  and  are the total relaxation time of a ( , )ph
tot K ( , )ph

in K ( , )ph
surf K ( , )ph

GB K

specific phonon, the inherent, phonon-surface and phonon-GB relaxation time, respectively. 

Here, the time domain normal mode analysis (TDNMA) 9, 10 is used to calculate the inherent 

phonon relaxation time ( , )ph
in K

where  is the upper integration limit which should be much longer than the lifetime of the *t

specific phonons.  is total energy of each phonon mode, and can be obtained by( , )E K

in which, ,  and  are the normal mode coordinate, velocity and ( )X K, ( )X K,& ( ) K,
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frequency of phonon, respectively. More details about TDNMA can be found in Ref. [ 10].

The and  are calculated by the similar method as electrons, and can ( , )ph
surf K ( , )ph

GB K

be expressed as

in which, 

 

and  are the component of phonon group velocity  ( , )phv  K || ( , )phv K ( , )phv K

normal and parallel to the surface, respectively. Finally, combining Eqs. (S18)-(S20) and Eqs. 

(S21)-(S24), the lattice thermal conductivity of the Si-based nanostructures can be obtained.

V. Inherent Relaxation Time of Electrons

Here, to obtain the inherent electron relaxation time, we fit the experimental results 

rather than calculate it directly. It is easy to know the mobility of electrons in bulk Si 11, 12, 

then by applying

,
*

0 b
el

m
e

 
 

(S25)

in which, , and  are the mobility, average band effective mass and elementary charge 0
*
bm e

of electrons, respectively. From the experimental results of Fig. S1, we can easily find that it 

is quite suitable to regard the inherent electron relaxation time as a constant for the carrier 

density ( cm-3) considered in our paper. 18 201 10 1 10  
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Figure S1. Inherent relaxation time of electrons in bulk Si measured by experiments.
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