Contents

I. Physical measurements

II. Synthesis

III. Computational details

IV. Supporting figures

I. Physical measurements

Shimadzu UV-2550 Spectrophotometer was used for the measurements. Spectra were typically measured in the range of 250-900 nm. NMR spectra were recorded on a Bruker Advance II spectrometer that operates at 500 MHz while recording ¹H, 76.8 MHz for ²H, and 202 MHz for ³¹P NMR. ¹H NMR spectra was referenced to TMS as an external standard, and ³¹P chemical shifts were referenced to external 85% H₃PO₄. Mass spectra were recorded on an Agilent Technologies ESI- TOF- MS. X-ray photoelectron spectroscopy (XPS) was recorded on PHI Quantum-2000. The sample was put under UHV to reach the 10⁻⁸ Pa range. The nonmonochromatized Al K α source was used at 10 kV and 10 mA. All binding energies were calibrated using the C (1s) carbon peak (284.6 eV), which was applied as an internal standard. High resolution narrow-scan spectra were recorded with the electron pass energy of 50 eV and takeoff angle of 55 ° to achieve the maximum spectral resolution.

X-ray Crystallography. Intensity data of **1** and **2** were collected on an Agilent SuperNova Dual system (Cu K α) at 100K. Absorption corrections were applied by using the program CrysAlis (multi-scan). The structure of **1** was solved by direct methods, and non-hydrogen atoms except CH₂Cl₂ and toluene solvent molecules were refined anisotropically by least-squares on F^2 using the SHELXTL program. Three phenyl groups (C13–C18; C143–C148; C221–C226) and the toluene solvent (C2S–C7S) were refined using a rigid model (AFIX 66). The largest residual density is near the position of Sb2 (0.92Å). The structure of **2** was solved by direct methods, only all of Ag, P and Sb atoms were refined anisotropically by least-squares on F^2 using the SHELXTL program. All initial refinements were severely restrained and constrained to idealized values (DFIX, AFIX and SADI). There is a level A alert "Large Reported Min. (Negative) Residual Density -14.77" in the crystal structure of **2**. The density minimum is near to atom Sb3 with a distance of 0.86 Å.

II. Synthesis

Materials and reagents.

Ethynylbenzene (PhC=CH, 98%) bis(diphenylphosphino)methane (dppm, 98%), 1,5-bis(diphenylphosphino) pentane (dpppe, 98%) and Silver hexafluoroantimonate (AgSbF₆, 98.0%) were purchased from J&K; sodium borohydride (NaBH₄, 98%) and other reagents employed were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). PhC=CAg was prepared by reacting of Ag₂O and PhC=CH in the presence of ammonium hydroxide. All reagents were used as received.

$[Ag_{19}(PhC \equiv C)_{14}(dppm)_3](SbF_6)_3$

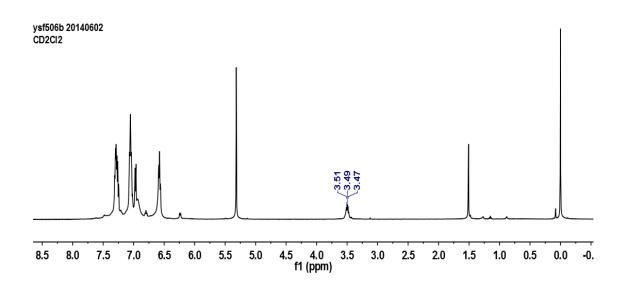
1 mL 0.1 M AgSbF₆ (0.1 mmol) in ethanol was added to the mixture of PhC=CAg (42 mg, 0.2 mmol) and Bis(diphenylphosphino)methane (38.4 mg, 0.1 mmol) in 3 mL ethanol. After ultrasonication, the pale yellow suspension was stirred for 30 min. 1 ml 0.040 M freshly prepared ethanol solution of NaBH₄ (0.04 mmol) was added dropwise under vigorous stirring, the color changed to brown in 5 min. The reaction mixture was stirred at room temperature in the absence of light for 9 h in air. The resulted mixture was centrifuged for 3 min at 10000 r/min and washed twice with ethanol. This crude brown solid was dissolved in a mixture of 3 mL CH₂Cl₂ and 0.2 mL toluene. After filtration, the filtrate was subject to the diffusion of a mixture of ether and n-hexane (v : v = 1 : 1) at 4°C to afford purple blue crystals after 5 days (37.5 mg, yield 46% based on Ag).

Anal. UV-Vis (λ , nm): 441; 590; Eg = 1.97 eV. ESI-TOF-MS (CH₂Cl₂): 1539.38 ([Ag₁₉(dppm)₃(PhC=C)₁₄]³⁺) and 2427.50 ([Ag₁₉(dppm)₃(PhC=C)₁₄(SbF₆)]²⁺). ¹H NMR (500MHz, CD₂Cl₂, δ , ppm): 3.49 (t, ²J_{PH}= 10.0 Hz, 6H, CH₂), 6.22-7.65 (m, 130H, Ph). ³¹P NMR (202 MHz, CD₂Cl₂, δ , ppm): 5.41 [J(¹⁰⁹Ag-P) = 760, J(¹⁰⁷Ag-P) = 657, ³J(¹⁰⁹Ag-P) = -3.6, ³J(¹⁰⁷Ag-P) = -1.2, ²J(P-P) = 178 Hz]. XPS (binding energy, eV): Ag 3d_{5/2}, 368.0; Ag 3d_{3/2}, 374.0 eV.

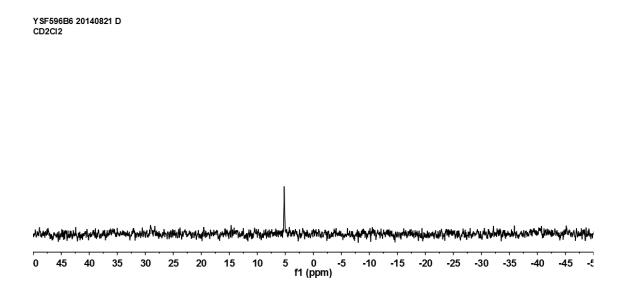
Ag₂₅(MeO-PhC≡C)₂₀(dpppe)₃(SbF₆)₃

1 mL 0.1 M AgSbF₆ (0.1 mmol) in ethanol was added to the mixture of MeO-PhC=CAg (44 mg, 0.2 mmol) and 1,5-bis(diphenylphosphino) pentane (44 mg, 0.1 mmol) in 3 mL ethanol. After ultrasonication, the pale yellow suspension was stirred for 30 min. 1 ml 0.040 M freshly prepared ethanol solution of NaBH₄ (0.04

mmol) was added dropwise under vigorous stirring, the color changed to brown in 10 min. The reaction mixture was stirred at room temperature in the absence of light for 9 h in air. The resulted mixture was centrifuged for 3 min at 10000 r/min and washed twice with ethanol. This crude brown solid was dissolved in a mixture of 3 mL CH₂Cl₂ and 0.2 mL toluene. After filtration, the filtrate was subject to the diffusion of a mixture of ether and n-hexane (v : v = 1 : 1) at 4°C to afford purple blue crystals after 5 days (31 mg, yield 35% based on Ag).


Anal. UV-vis (λ , nm): 410; 450; 590 nm. Eg = 1.97 eV. ESI-MS (CH₂Cl₂/MeOH = 5 : 1 (V : V): 2213.68 ([Ag₂₅dpppe₃(MeO-PhC=C)₂₀]³⁺) and 3438.48 ([Ag₂₅dpppe₃(MeO-PhC=C)₂₀(SbF₆)]²⁺). ³¹P NMR (202 MHz, CD₂Cl₂, δ , ppm): 4.0 ppm (external reference 85% H₃PO₄). XPS (binding energy, eV): Ag 3d_{5/2}, 368.3; Ag 3d_{3/2}, 374.4 eV.

III. Computational details


Density functional theory (DFT) calculations of the Ag₁₉ cluster were performed with the quantum chemistry program Turbomole V6.5.^[1] Since the phenyl rings did not contribute to the frontier molecular orbitals of the cluster, we replaced Ph- rings in PhCC- and (Ph₂P)₂CH₂ ligands with –CH₃ groups for computational efficiency. The def2-SV(P) basis sets were used for C, P, S and H, while effective core potentials which have 19 valence electrons and include scalar relativistic corrections were used for Ag.^[2] Geometry optimization was done with the TPSS (Tao, Perdew, Staroverov, and Scuseria) functional.^[3] Time-dependent DFTs were done at the hybrid B3-LYP level with def2-SV(P) basis sets. All transitions together with their oscillator strengths were then convoluted with a Lorentzian line shape of 0.15 eV broadening to make the optical-absorption spectrum.

- R. Ahlrichs, M. Bar, M. Haser, H. Horn, C. Kolmel, *Chem. Phys. Lett.* **1989**, *162*, 165-169.
- [2] D. Andrae, U. H äußermann, M. Dolg, H. Stoll, H. Preuß, *Theor. Chim. Acta* 1990, 77,123-141.
- [3] J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, *Phys. Rev. Lett.* **2003**, *91*, 146401.

IV. Supporting figures

Figure S2. ²H NMR (CH₂Cl₂/CD₂Cl₂, v : v = 500 : 1) spectrum of **1** synthesized by using NaBD₄ in place of NaBH₄. The peak at 5.32 ppm is from CD₂Cl₂.

AA'XX' patterns:

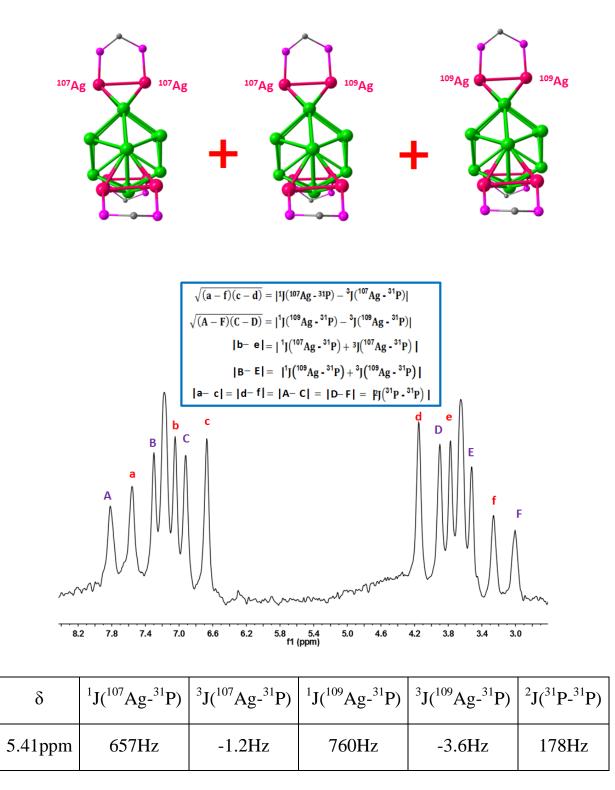
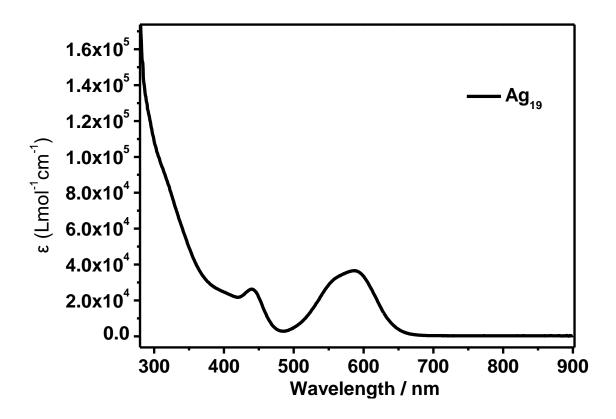



Figure S3. ³¹P NMR spectrum of 1 in CD₂Cl₂ and the analysis of coupling constants.

Figure S4. UV-Vis spectrum of $[Ag_{19}(dppm)_3(PhC \equiv C)_{14}](SbF_6)_3$ in CH₂Cl₂. For the experimental spectrum shown in Figure 5 of the main text, a Jacobian factor was applied to convert the nm-based to eV-based absorbance.

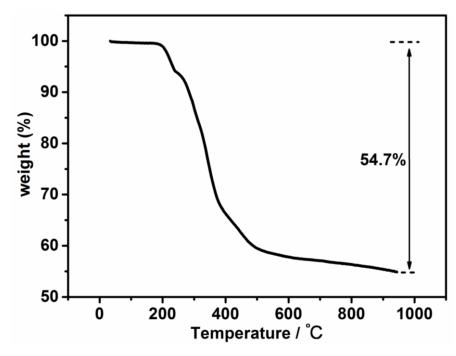
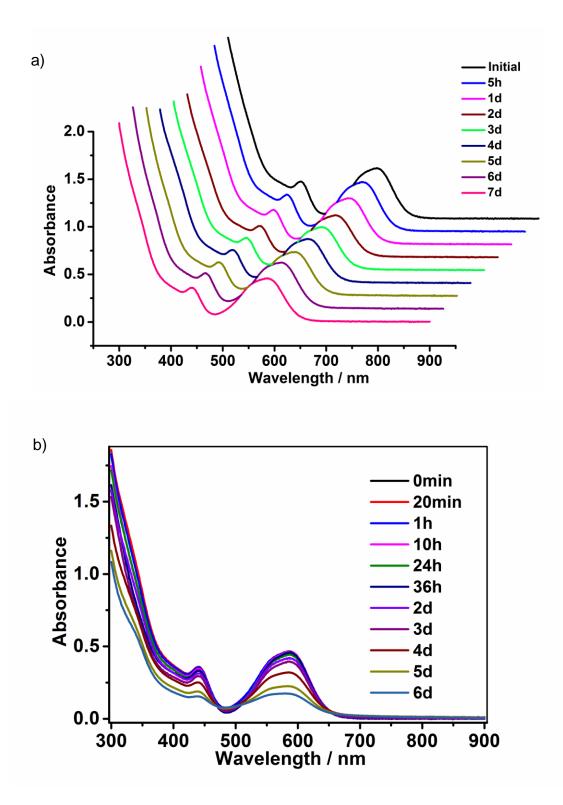
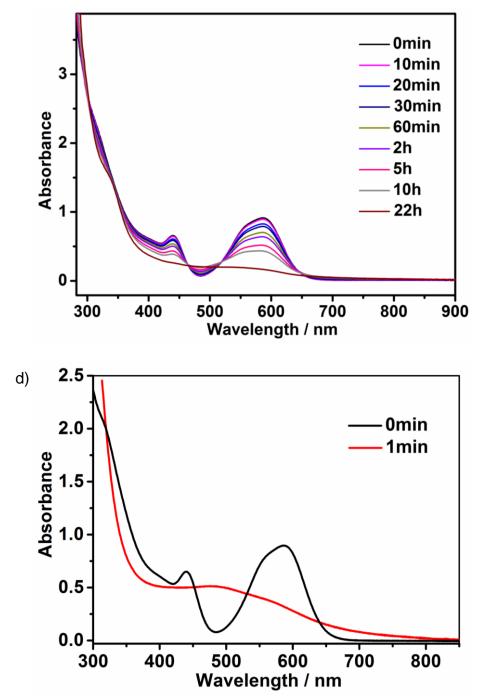
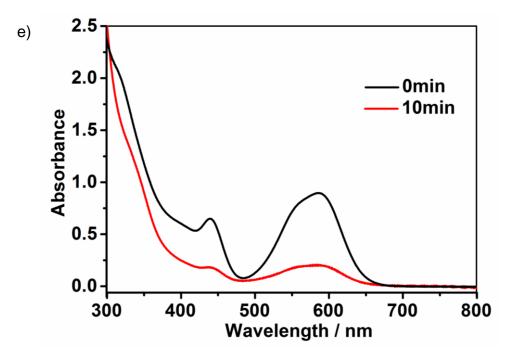





Figure S5. Thermogravimetric analysis (TGA) of 1 in N₂ atmosphere.

c)

Figure S6. Time-dependent UV-Vis spectra of **1** for monitoring stability under various conditions. a) in N₂ atmosphere at room temperature in CH₂Cl₂; b) under ambient conditions in CH₂Cl₂; c) alkaline environment: Ag₁₉ (2 mg) was dissolved in 2 mL CH₂Cl₂ and mixed with 20 μ L 0.2 M MeONa in MeOH; d) acidic environment: Ag₁₉ (2 mg) was dissolved in 2 mL CH₂Cl₂ and mixed in 2 mL CH₂Cl₂ and mixed with 20 μ L 0.2 M MeONa in MeOH; d) acidic environment: Ag₁₉ (2 mg) was dissolved in 2 mL CH₂Cl₂ and mixed with 2 μ L CH₃COOH; e) high temperature environment: Ag₁₉ (2 mg) was dissolved in 1 mL CH₂Cl₂ and 3mL toluene at 80 °C.

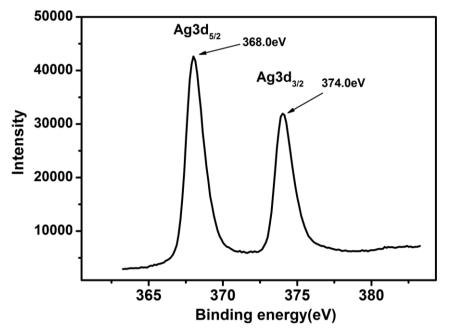
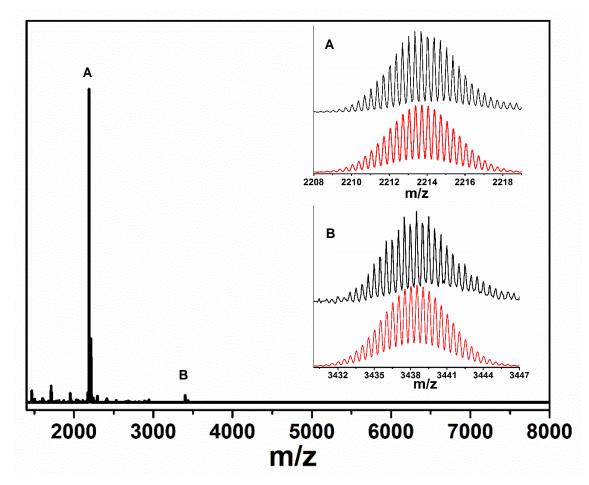
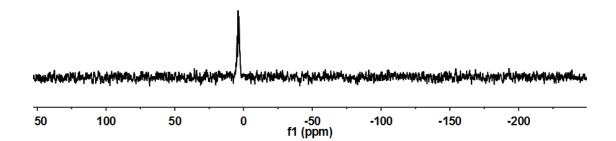




Figure S7. XPS spectrum of 1.

Figure S8. Mass spectra of $[Ag_{25}(dpppe)_3(PhC=C)_{20}](SbF_6)_3$ (2). Inset: the experimental (black trace) and simulated (red trace) isotopic patterns of molecular ion.

20150530 ysf742a Acetone

Figure S9. ³¹P NMR spectrum of **2** in acetone- D_6 .

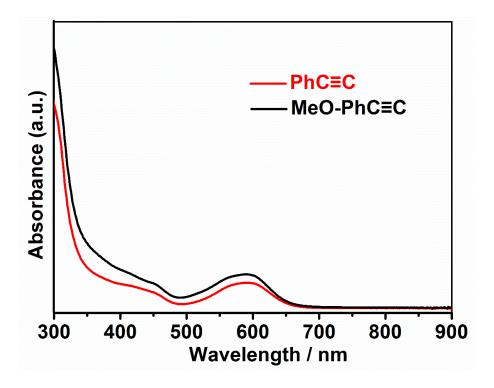
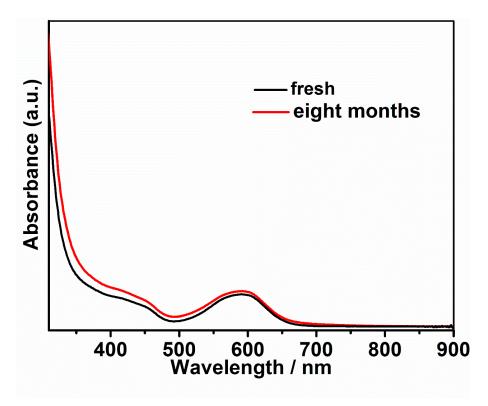



Figure S10. UV-vis spectra of Ag₂₅ in CH₂Cl₂ protected by different alkynyl groups.

Figure S11. UV-vis spectra of **2** in CH_2Cl_2 measured at different time for stability check (solid stored for eight months).

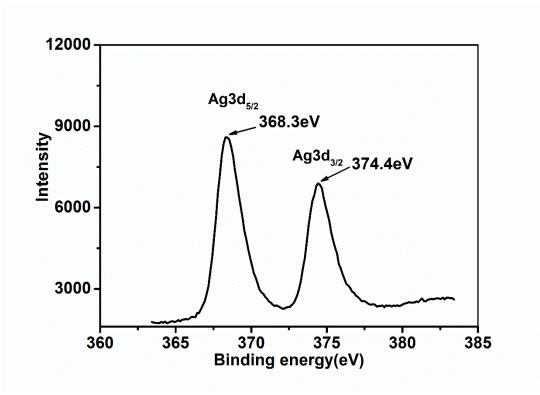
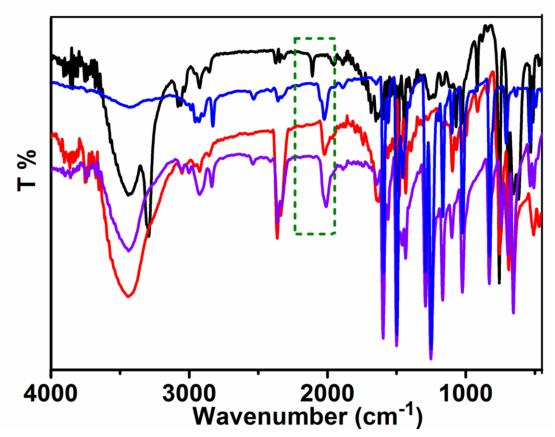



Figure S12. XPS spectrum of 2.

Figure S13. IR spectrum of PhC=CH (black trace), MeOPhC=CAg (blue trace), Ag_{19} (red trace) and Ag_{25} (purple trace).