Electronic Supplementary Information (ESI)

Synthesis of hollow Cu_{1.8}S nano-cubes for electromagnetic interference shielding

Wanchun Jiang,^a Fan Wu,^{ab*} Yijun Jiang,^a Mengxiao Sun,^{ab} Kun Zhang,^{ac}

Yilu Xia,^c Derong Wang,^a Aming Xie^{b*}

- a. State Key Laboratory for Disaster Prevention & Mitigation of Explosion & Impact, PLA University of Science and Technology, Nanjing 210007, P. R. China.
- b. School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
- c. School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.

Fig. S1 The magnetic hysteresis loops of hollow $Cu_{1.8}S$ nano-cubes.

Fig. S2 δ of an ideal film with 100 wt% of hollow Cu_{1.8}S nano-cubes.

Fig. S3 The real part (a) and imaginary part (b) of ε_r , the filler loading ratios of hollow Cu_{1.8}S nano-cubes in wax are 20, 30 and 40 wt%.

Table S1. EMI SE of Typical Materials Reported in Recent Literatures. (PMMA: polymethylmethacrylate; WPU: water-borne polyurethane; PEI: polyetherimide; PVDF: poly(vinylidenefluoride); PLLA: poly (*L*-lactic acid);PR: Phenolic resin)

Fillers	Matrix	Loading raito	Test frequency range	Best EMI SE	Thickness	Ref.
			(GHz)	(dB)	(mm)	
Porous carbon	Wax	20 wt. %	2-18	50	2.0	1
RGO	PMMA	1.8 vol. %	8-12	<20	4.0	2
RGO	PMMA	4.2 vol. %	8-12	30	3.4	3
RGO	WPU	7.7 wt.%	8.2-12.4	32	2.0	4
RGO	PEI	10 wt. %	8-12	<25	2.3	5
RGO@Fe ₃ O ₄	PEI	10 wt. %	8-12	<20	2.5	6
CNTs sponge	Epoxy	2 wt. %	8-12	40	2.0	7
RGO	BaTiO ₃	4 wt. %	8.2-12.4	40	1.5	8
CNTs	WPU	76 wt. %	8.2-12.4	80	0.8	9
RGO-foam	-	100 wt. %	8-12	25.2	0.3	10
CNTs	PLLA	10 wt. %	8.2-12.4	23	2.5	11
RGO	PU sponge	10 wt. %	8-12	57.7	60	12
carbon fibers/RGO@ Fe ₂ O ₃	PR	30 wt. %	8.2-12.4	45.26	4.0	13

REFERENCES

- [S1]Song, W.; Cao, M.; Fan, L.; Lu, M.; Li, Y.; Wang, C. and Ju, H. Highly Ordered Porous Carbon/Wax Composites for Effective Electromagnetic Attenuation and Shielding. Carbon 2014, 77, 130-142
- [S2]Zhang, H.; Yan, Q.; Zheng, W.; He, Z. and Yu, Z. Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2011, 3, 918-924.
- [S3]Zhang, H.; Zheng, W.; Yan, Q.; Jiang, Z. and Yu, Z. The Effect of Surface Chemistry of Graphene on Rheological and Electrical Properties of Polymethylmethacrylate Composites. *Carbon* 2012, 50, 5117-5125.
- [S4]Hsiao, S.; Ma, C. M.; Tien, H.; Liao, W.; Wang, Y.; Li, S. and Huang, Y. Using a Non-Covalent Modification to Prepare a High Electromagnetic Interference Shielding Performance Graphene Nanosheet/Water-Borne Polyurethane Composite. *Carbon* 2013, 60, 57-66.
- [S5]Ling, J.; Zhai, W.; Feng, W.; Shen, B.; Zhang, J. and Zheng, W. Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2013, 5, 2677-2684.
- [S6]Shen, B.; Zhai, W.; Tao, M.; Ling, J. and Zheng, W. Lightweight, Multifunctional Polyetherimide/Graphene@Fe₃O₄ Composite Foams for Shielding of Electromagnetic Pollution. ACS Appl. Mater. Interfaces 2013, 5, 11383-11391.
- [S7]Chen, Y.; Zhang, H.; Yang, Y.; Wang, M.; Cao, A. and Yu, Z. High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding. *Adv. Mater.* 2016, *26*, 447-455.
- [S8]Qing, Y.; Wen, Q.; Luo, F.; Zhou, W. and Zhu, D. Graphene Nanosheets/BaTiO₃ Ceramics as Highly Efficient Electromagnetic Interference Shielding Materials in the X-Band. J. Mater. Chem. C 2016, 4, 371-375.
- [S9]Zeng, Z.; Chen, M.; Jin, H.; Li, W.; Xue, X.; Zhou, L.; Pei, Y.; Zhang, H. and Zhang, Z. Thin and Flexible Multi-Walled Carbon Nanotube/Waterborne Polyurethane Composites with High-Performance Electromagnetic Interference Shielding. *Carbon* 2016, 96, 768-777.
- [S10] Shen, B.; Li, Y.; Yi, D.; Zhai, W.; Wei, X. and Zheng, W. Microcellular Graphene Foam for Improved Broadband Electromagnetic Interference Shielding. *Carbon* 2016 102, 154-160.
- [S11] Kuang, T.; Chang, L.; Chen, F.; Sheng, Y.; Fu, D. and Peng, X. Facile Preparation of Lightweight High-Strength Biodegradable Polymer/Multi-Walled Carbon Nanotubes Nanocomposite Foams for Electromagnetic Interference Shielding. *Carbon* 2016, 105, 305-313.
- [S12] Shen, B.; Li, Y.; Zhai, W. and Zheng, W. Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding. ACS Appl. Mater. Interfaces 2016, 8, 8050-8057.
- [S13] Singh, A.; Garg, P.; Alam, F.; Singh, K.; Mathur, R.; Tandon, R.; Chandra, A

and Dhawan, S. Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ -Fe₂O₃ and carbon fibers for excellent electromagnetic interference shielding in the X-band. *Carbon* **2012**, *50*, 3868-3875.