Low-Temperature Atomic Layer Deposition Delivers More Active and Stable Pt-Based Catalysts

Hao Van Bui¹, Fabio Grillo^{1,*}, Sri Sharath Kulkarni¹, Ronald Bevaart¹, Nguyen Van Thang², Bart van der Linden¹, Jacob A. Moulijn¹, Michiel Makkee¹, Michiel T. Kreutzer¹, and J. Ruud van Ommen¹

¹Department of Chemical Engineering, ²Department of Radiation Science and Technology, Delft University of Technology, 2628 BL, Delft, The Netherlands

*Corresponding author: <u>f.grillo@tudelft.nl</u>

Supporting Information

Figure S1. Platinum loading vs deposition temperature after 10 ALD cycles and respective size distributions and representative TEM micrographs.

Figure S2. TGA curves obtained for untreated graphene, ozone-treated graphene, and Pt/GNP composites obtained at different temperatures.

Figure S3. Propene conversion as a function of temperature for the Pt/graphene composites obtained after 1, 3, and 10 ALD cycles at both 100 °C and 200 °C.

Figure S4. Extended results of the catalytic test plotted as propene conversion and temperature vs time obtained for (upper part) Pt/GNP/100 and Pt/GNP200 (bottom).

Figure S5. HRTEM image of the as-synthesized Pt/GNP/100 (center). The satellite images are zoomed-in views highlighting the crystalline structure and lattice constants of Pt NPs.

Figure S6. Determination of the lattice constants of the as-synthesized Pt NPs.

Figure S7. Growth of Pt NPs on untreated graphene at 150 $^{\circ}$ C (a) and 200 $^{\circ}$ C for 10 ALD cycles.

Figure S8. Surface-based size distribution (dS/dr vs d) of the Pt/GNP/100 and the Pt/GNP200 NPs after the catalytic test.

Figure S9. Simulation results of the sintering of Pt nanoparticles via simultaneous gas-phase-mediated Ostwald ripening and nanoparticle diffusion and coalescence. The initial conditions of the simulations were the experimental particle size distributions and nanoparticle density of the as-synthesized composites obtained after 1 and 3 cycles at both 100 °C and 200 °C. The parameters used for each simulation were: T=350 °C, $p_{O2}=152$ torr, $D_k=D_1k^{-0.1}$ (where D_k is the mobility of a nanoparticle of size k, that is the number of atoms comprising the nanoparticle) and $D_1=0.01$ nm² s⁻¹. From left to right, the plots show the evolution of: the number of nanoparticles per unit area normalized to to the initial value; the total number of facet sites divided by the total number of atoms; the total dispersion, that is the total number of surface atoms divided by the total number of atoms; the surface-averaged diameter of the ensemble; and the number-based particle size distribution.

Figure S10. Simulation results of the sintering of Pt nanoparticles via gas-phase-mediated Ostwald ripening and nanoparticle diffusion and coalescence. The initial conditions of the simulations were the experimental particle size distributions and nanoparticle density of the as-synthesized composites obtained after 10 cycles at both 100 °C and 200 °C. (a) shows the evolution of the number of nanoparticles per unit area normalized to the initial value in case of sintering via Ostwald ripening and sintering via simultaneous gas-phase-mediated Ostwald ripening (T=350 °C, $p_{02}=152$ torr) and nanoparticle diffusion and coalescence ($D_k=D_1k^{-2/3}$, $D_1=0.1$ nm² s⁻¹). (b) and (c) show the evolution of: the number of nanoparticles per unit area normalized to the initial value; the total number of facet sites divided by the total number of atoms; the total dispersion, that is the total number of surface atoms divided by the total number of atoms; the surface-averaged diameter of the ensemble; and the number-based particle size distribution (T=350 °C, $p_{02}=152$ torr, $D_k=D_1k^{-0.1}$, $D_1=0.01$ nm² s⁻¹).

Evaluation of possible internal and external mass transfer limitations

In order to rule out possible mass transfer limitations we used the Wiesz-Prater criterion for internal mass transfer limitation:

$$C_{WP} = \frac{r_{obs}\rho_p R^2}{D_{eff}C_s} \ll 1$$

and the Mears criterion for external mass transfer limitations.

$$C_M = \frac{r_{obs}\rho_b R}{k_c C_s} \ll 1$$

Where r_{obs} is the observed reaction rate expressed in mol $g_{cat}^{-1}s^{-1}$, ρ_p is the density of the catalyst particles, R is the volume-based radius of the catalyst particles, D_{eff} is the diffusion coefficient of the reactant within the catalyst particles, C_s is either concentration of reactant at outer surface of the catalyst particle for the Wiesz-Prater criterion or the concentration of reactant at the inlet of the reactor for the Mears criterion, ρ_b is the bulk density of the catalyst and, k_c is the external mass transfer coefficient.

 ρ_b varies in the range of 0.03-0.1 g/cm³ as reported by the supplier (Strem Chemicals) and it was thus approximated to an average value of 65 kg/m³. The volume-based radius was measured by means of a LS Beckman Coulter Particle Size Analyzer and it was found to be about 18.35 μ m. The density of the catalyst particle was estimated as follows:

$$\rho_p = \rho_{graphite} (1 - \epsilon_p) \sim 86 \text{ kg/m}^3$$

Where $\rho_{graphite}$ is the density of graphite, which is about 2160 kg/m³, and ϵ_p is the void fraction of the catalyst particle. The latter is assumed to be consisting of agglomerated graphene nanoplatelets, in other words ϵ_p is the void fraction of the graphene nanoplatelets agglomerates. ϵ_p , in turn, was estimated as follows:

$$\epsilon_p = 1 - \frac{(\rho_b / \rho_{graphite})}{(1 - \epsilon_{bed})} \sim 0.96$$

Here, $(1 - \epsilon_{bed})$, that is, the packing density of the catalytic bed, was assumed to be about 0.3 (close random packing for ellipsoids). Such a high value of the void fraction for the graphene nanoplatelets agglomerates ($\epsilon_p > 0.9$) is consistent with typical values reported for agglomerates of nanostructured powders such as agglomerates of nanoparticles (0.95-0.99).

Given the high porosity of the graphene nanoparticle agglomerates, D_{eff} was assumed to be about 10^{-5} m²/s, that is the typical value of the diffusion coefficient of a gas undergoing molecular diffusion at atmospheric pressure and room temperature (conservative estimate).

Given the low Reynolds number (~0.01, using average values for the viscosity and the density of helium in the temperature range of 100-450 °C and a superficial velocity of 0.04 m/s), we made a conservative estimate of k_c by approximating the Sherwood number to 2 (stagnant flow around a sphere). By doing so we found a k_c of about 5 m/s.

By using the aforementioned figures and calculating r_{obs} based on the maximum and the minimum value of k_{app} reported in this work, we obtain:

$$C_{WP} \sim 10^{-5} - 10^{-6} \ll 1$$

$$C_M \sim 10^{-6} - 10^{-7} \ll 1$$

Hence, we conclude that the influence of mass transfer on our results is negligible.