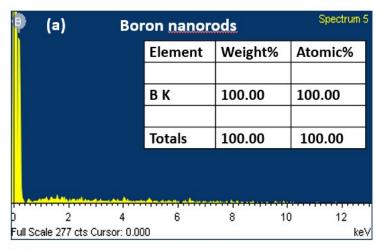
Supporting Information


Amorphous Boron Nanorods as Anode Material for Lithium Ion Batteries at Room Temperature

Changjian Deng,^a Miu Lun Lau, ^a Heather Barkholtz,^b Haiping Xu, ^b Meiyue Olivia Xu, ^b Tao Xu, ^b Yuzi Liu,^c

Hao Wang,^d Justin G. Connell,^e Riley Parrish,^a Kassiopeia A. Smith,^a Hui Xiong*^a

- a. Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA.
- b. Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
- c. Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA.
- d. Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- e. Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, IL, 60439, USA

^{*}Corresponding Author. Email: clairexiong@boisestate.edu

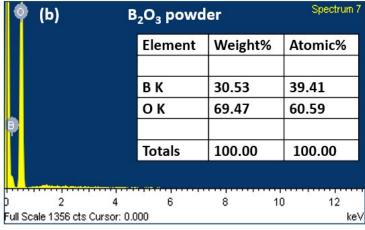
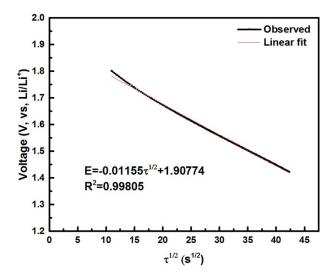


Figure S1: EDS of (a) as-prepared boron nanorods and (b) raw B_2O_3 powders.


The diffusion coefficient can be expressed as the following equation¹:

$$D_{Li+} = \frac{\pi}{4} \left(\frac{m_B V_M}{M_B S}\right)^2 \left(\frac{\Delta E_S}{\tau \left(\frac{dE_t}{d\sqrt{\tau}}\right)}\right)^2, \tau \ll \frac{L^2}{D_{Li+}}$$
(1)

where m_B , V_M , M_B , S and $^{\tau}$ are mass, molecular volume, molecular weight, active surface area and current pulse time of the electrode. If E versus $\sqrt{\tau}$ shows a linear behavior during the current pulse (Figure S1), the equation can be transformed into:

$$D_{Li+} = \frac{\pi}{4\tau} (\frac{m_B V_M}{M_B S})^2 (\frac{\Delta E_S}{\Delta E_t})^2, \tau \ll \frac{L^2}{D_{Li+}}$$
 (2)

Where ${}^{\Delta E}{}_{\mathcal{S}}$ and ${}^{\Delta E}{}_t$ for each titration are illustrated in Figure S2.

Figure S2: Linear behavior of the E vs $\tau^{1/2}$ relationship.

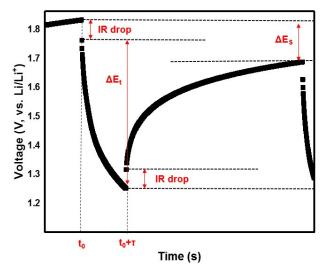


Figure S3: Schematic of GITT technique.

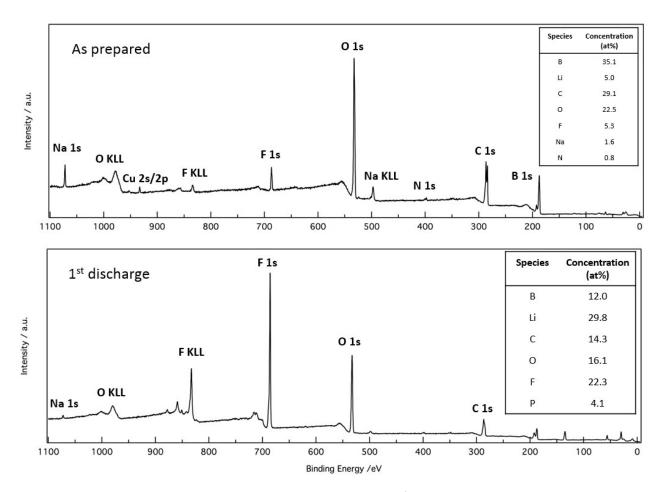


Figure S4: Ex situ XPS service scans of as prepared and 1st discharged boron materials

Notes and references

(1) Rui, X. H.; Ding, N.; Liu, J.; Li, C.; Chen, C. H.: Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)(3) cathode material. *Electrochim Acta* **2010**, *55*, 2384-2390.