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I. THE FIRST ORDER SCATTERING TERM

For the graphene-coated dielectric nanowire, if the radius of the dielectric nanowire is far smaller than the wave-
length, the total scattering is dominated by the first order scattering term. In the linear case where I0 = 0, we show
the normalized scattering cross sections (NSCSs) for different parameters in Fig. 1.

The graphene-coated dielectric nanowire can exhibit cloaking [1] and superscattering [2] at different frequencies. As
shown in Fig. 1(a), superscattering occurs at a low frequency due to the resonance of the localized surface plasmonic
mode, while cloaking occurs at a high frequency. If the chemical potential of graphene is small, both the frequencies
for superscattering and cloaking show red shifts. According to the formula for the linear surface conductivity of
graphene, the dissipation loss increases when the frequency decreases. Thus both the NSCSs at the superscattering
and cloaking frequencies decrease with the decreasing of the chemical potential. Note in Fig. 1(a), �ω � μc are
fulfilled for all the parameters.

Optical bistability is based on the nonlinear response of graphene. In order to enhance the local field intensity along
the graphene coating, the working frequency of bistable scattering should be near to the superscattering frequency.
Figs. 1(b)-(c) show the dependences between the NSCS and the incident frequency, where μc = 0.20 eV and μc = 0.50
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FIG. 1: (a) The normalized scattering cross sections (NSCSs) for different chemical potentials μc and at different frequencies
f . (b)-(c) The dependences between the NSCS and the incident frequency, where μc = 0.20 eV in (b) and μc = 0.50 eV in
(c). For comparison, the contributions from the n = 1 scattering terms are also plotted. The relaxation time of graphene is
τ = 0.30 ps. The relative permittivity and permeability of the dielectric nanowire are εr = 2.7 and μr = 1, respectively, and
the radius of the nanowire is R = 200 nm.
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FIG. 2: (a) The scattering coefficients and (b) NSCSs for different incident field intensities, where f = 13.00 THz, μc = 0.35
eV, and τ = ∞.

eV, respectively. In Fig. 1(b), according to the formula for the nonlinear surface conductivity of graphene, the
nonlinear surface conductivity is large due to the small chemical potential and low superscattering frequency, although
the local field intensity is weak. While in Fig. 1(c), the nonlinear surface conductivity is small, but the local field
intensity is large due to the enhanced NSCS. The nonlinear surface conductivity and the local field intensity are
contradictory to each other. Besides, as shown in Figs. 1(b)-(c), the NSCSs are dominated by the n = 1 scattering
term. This implies that it is enough to only consider the first order scattering coefficient s1 in the study of bistable
scattering.

II. NOTES ON NONLINEAR SCATTERING MODEL

Before using the approximations of k0R � 1 and kR � 1, from the two boundary conditions of Eθ and Hz, we
obtain a cubic nonlinear equation for the first order scattering coefficient s1:
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the nonlinear surface conductivity of graphene is neglected, namely in the limit of H0 = 0, the scattering coefficient
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III. NOTES ON BISTABLE SCATTERING

A. Lossless case

If the working frequency is larger than the superscattering frequency, there is only one real solution and no bistable
scattering occurs. Figs. 2(a)-(b) show the scattering coefficients and NSCSs for different incident field intensities at
f = 13.00 THz. If the incident field intensity is large enough, the first term in the discriminant of the cubic nonlinear



3

equation can be neglected and the scattering coefficient reduces to
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As shown in Figs. 2(a)-(b), with the increasing of the incident field intensity, the scattering coefficient increases but
the NSCS decreases.

B. Lossy case

In the lossy case, the nonlinear equation reduces to
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and I0 = η0H
2
0/2 is the incident field intensity. Specially, when I0 = 0,
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To further simplify the equation, we can separate the real and imaginary parts, where s1 = s1r+ is1i . The equation
simplifies to
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FIG. 3: (a) The scattering coefficients and (b) NSCSs at different frequencies, where I0 = 0,  μc = 0.35 eV, and τ = ∞. The  sold 
curve is obtained from the nonlinear scattering model with approximations of k0R � 1 and kR � 1, and the scatter diagram is 
obtained without approximations.
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This coupled nonlinear equation can be solved numerically.

IV. BISTABLE SCATTERING WITHOUT APPROXIMATIONS

In the nonlinear scattering model, we use the approximations of k0R � 1 and  kR � 1, and the Bessel function and 
Hankel function are replaced by their respective asymptotic expansions, respectively. We will discuss in the following 
that this kind of approximation is acceptable.

A. Lossless case

First we consider a special case. Fig. 3 shows the comparison between the scatterings in the linear case with 
and without approximations, where I0 = 0 and τ = ∞. In the nonlinear scattering model, when we take the 
approximations of k0R � 1 and  kR � 1, the real part of the Hankel function is neglected, which leads to the breaking 
of the single channel limit [3]. At the superscattering frequency, the NSCS is infinite in the approximate model, 
but it equals to a finite value (3.01 dB in this structure) when there are no approximations. However, this kind 
of approximation is acceptable since the working frequency of bistable scattering is near but not very close to the 
superscattering frequency. For example, at f = 12.00 THz, the solid curve agrees well with the scatter diagram.
In the nonlinear case, we consider the scatterings at f = 13.00 THz and f = 12.00 THz, respectively. As shown 

in Fig. 4, there is no bistable scattering at f = 13.00 THz, where the solid curves are calculated from the nonlinear
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FIG. 4: (a) The scattering coefficients and (b) NSCSs for different incident field intensities, where f = 13.00 THz, μc = 0.35 eV, 
and τ = ∞. The solid curves are calculated from the nonlinear scattering model with approximations of k0R � 1 and  kR � 1, 
which are the same with that in Fig. 2. The scatter diagrams are calculated without approximations.
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FIG. 5: (a) The scattering coefficients and (b) NSCSs for different incident field intensities, where f = 12.00 THz, μc = 0.35 eV, 
and τ = ∞. The solid curves are calculated from the nonlinear scattering model with approximations of k0R � 1 and  kR � 1, 
and the scatter diagrams are calculated without approximations. The curves or scatter diagrams with different colors corresponds 
to different branches.

scattering model with approximations of k0R � 1 and  kR � 1, and the scatter diagrams are calculated without 
approximations. The scatter diagrams deviate a little from the solid curves when the incident filed intensity is small, 
since the working frequency is a little near to the superscattering frequency. However, their scattering behaviors are 
totally the same and there are no bistable scatterings in the scattering models with and without approximations.
At f = 12.00 THz, bistable scattering occurs as shown in Fig. 5. The solid curves calculated with approximations 

agree well with the scatter diagrams calculated without approximations. The only difference is the switching-up 
intensity. For the model without approximations, Ton is decreased slightly. But this difference is not obvious to affect 
the bistable scattering.

B. Lossy case

In the lossy case, the solid curves calculated with approximations of k0R � 1 and  kR � 1 also agree well with the 
scatter diagrams calculated without approximations, as shown in Fig.6. Compared with the bistable scattering shown by 
the solid curves, the bistable scattering shown by the scatter diagrams have smaller switching-up and
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FIG. 6: (a) The scattering coefficients and (b) NSCSs for different incident field intensities, where f = 12.00 THz, μc = 0.35 eV, 
and τ = 0.30 ps. The solid curves are calculated from the nonlinear scattering model with approximations of k0R � 1 and  kR � 
1, and the scatter diagrams are calculated without approximations. In (a), the solid curve and circles denote Im (s1), and the 
dashed curve and squares denote Re (s1). The curves or scatter diagrams with different colors corresponds to different branches.
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FIG. 7: (a) The NSCSs for different working frequencies, where μc = 0.350 eV, τ = 0.30 ps, and the values of f are taken
as 11.90 THz (blue curve), 12.00 THz (green curve), 12.05 THz (red curve), and 12.20 THz (black curve), respectively. For
comparison, the dashed curves for a fixed nonlinear surface conductivity where f = 12.00 THz are also plotted. (b) The NSCS
for different chemical potentials of graphene, where f = 12.00 THz, τ = 0.30 ps, and the values of μc are taken as 0.355
eV (blue curve), 0.350 eV (green curve), 0.346 eV (red curve), and 0.340 eV (black curve), respectively. For comparison, the
dashed curves for a fixed nonlinear surface conductivity where μc = 0.350 eV are also plotted. (c) The NSCS for different
permittivities of the dielectric nanowire, where f = 12.00 THz, μc = 0.350 eV, τ = 0.30 ps, and the values of εr are taken as
2.65 (blue curve), 2.70 (green curve), 2.73 (red curve), and 2.80 (black curve), respectively.

switching-down intensities. But this change is very small and it is acceptable for the study of bistable scattering.

V. NOTES ON DISCUSSION

In the main manuscript, we have discussed the bistable scatterings at different working frequencies. According
to the nonlinear surface conductivity of graphene, the shift of the working frequency also induces a change of the
nonlinear surface conductivity. However, this change has a weak contribution to the NSCS. In Fig. 7(a), for a fixed
working frequency, there are two curves: one solid curve and one dashed curve. For the solid curve, both the linear
and nonlinear surface conductivities are calculated at the given working frequency. While for the dashed curve, the
linear surface conductivity is calculated at the given working frequency, but the nonlinear surface conductivity is
calculated at a fixed frequency f = 12.00 THz. By comparing the solid and dashed curves, we know that the change
of the nonlinear surface conductivity induced by the shift of the working frequency has a weak contribution to the
bistable scattering.

The chemical potential of graphene also plays an important role to determine the bistable scattering. According
to Ref. [2], the superscattering frequency depends on the chemical potential. If the chemical potential increases, the
superscattering frequency also increases. In the bistable scattering, the blue shift of the superscattering frequency is
equivalent with the red shift of the working frequency. To validate this prediction, we show the NSCSs for different
chemical potentials of graphene in Fig. 7(b), where f = 12.00 THz, τ = 0.30 ps, and εr = 2.7.

As shown by the solid blue curve in Fig. 7(b), if the chemical potential increases, the corresponding superscattering
frequency increases and the equivalent working frequency decreases. Thus the switching threshold is increased.
However, if the chemical potential of graphene decreases, the corresponding superscattering frequency decreases and
the equivalent working frequency increases. Thus the switching threshold is decreased, as shown by the solid red
curve. If the chemical potential continues to decrease, the switching threshold decreases and the bistable scattering
disappears gradually.
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According to the nonlinear surface conductivity of graphene, the nonlinear surface conductivity depends on the 
chemical potential. However, the shift of the NSCS is mainly due to the shift of the superscattering frequency. The 
contribution from the change of the nonlinear surface conductivity is small. For comparison, in Fig. 7(b), we also plot 
the NSCSs for a fixed nonlinear surface conductivity where μc = 0.350 eV. The change of the nonlinear surface 
conductivity only adds a perturbation to the shift of the NSCS.

The permittivity of the dielectric nanowire is also an important parameter to determine the bistable scattering. 
According to Ref. [2], the superscattering frequency depends on the permittivity of the dielectric nanowire. If 
the permittivity increases, the superscattering frequency decreases. In the bistable scattering, the red shift of the 
superscattering frequency is equivalent with the blue shift of the working frequency. To validate this prediction, we 
show the NSCSs for different permittivities of the dielectric nanowire in Fig. 7(c), where f = 12.00 THz, μc = 0.350 
eV, and τ = 0.30 ps.
As shown by the solid blue curve, if the permittivity decreases, the superscattering frequency increases and the 

working frequency decreases. Thus the switching threshold is increased. Whereas, if the permittivity increases, the 
switching threshold is decreased, as shown by the solid red curve. If the permittivity continues to increase, the bistable 
scattering disappears gradually, as shown by the solid black curve.
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