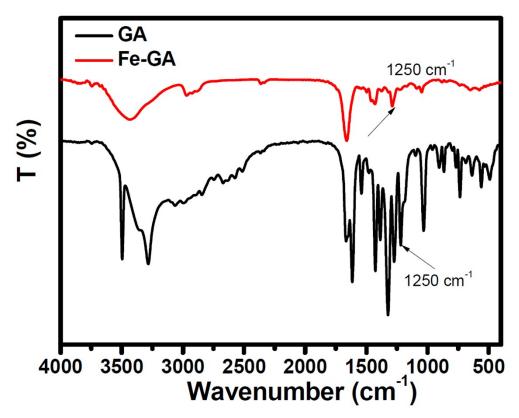
Supporting Information

Ultra-small Iron-Gallic Acid Coordination Polymer Nanoparticles for Chelator-free Labeling of ⁶⁴Cu and Multimodal Imaging-guided Photothermal Therapy

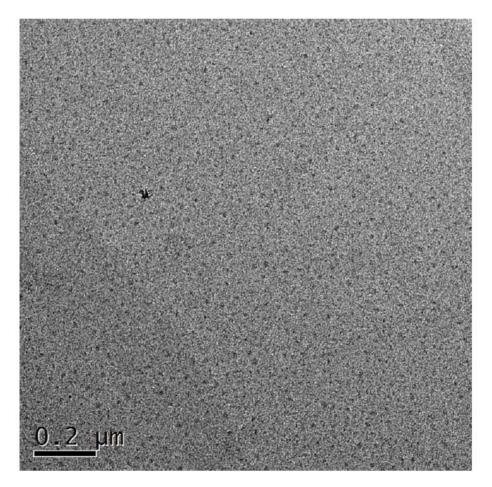
Qiutong Jiu enjun Zhu¹, Dawei Jiang^{2,3}, Rui Zhang¹, Christopher J. Kutyreff²,

Jonathan W. Engle², Peng Huang³, Weibo Cai^{2*}, Zhuang Liu¹, and Liang Cheng^{*1}

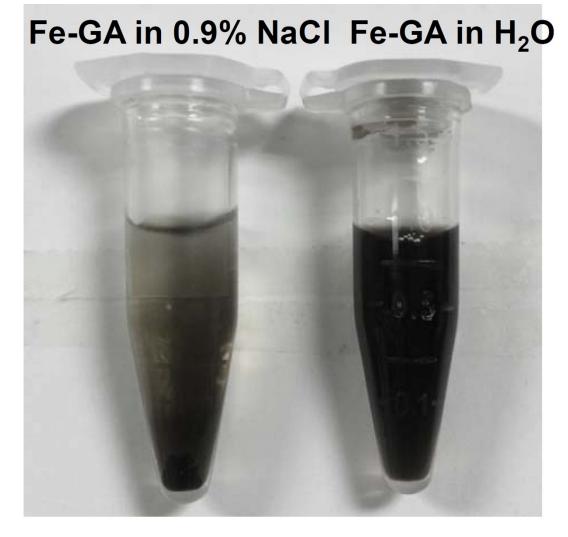
¹Institute of Functional Nano & Soft Materials (FUNSOM), College of Nano Science

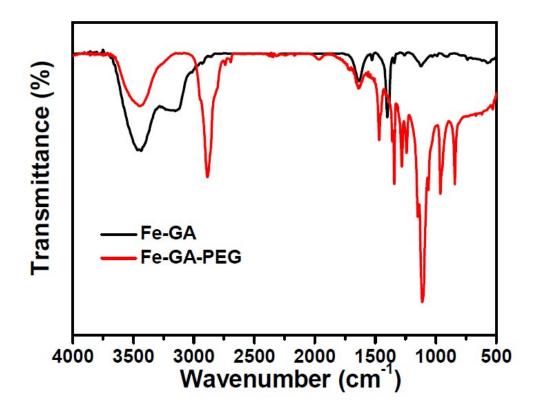

& Technology (CNST), Collaborative Innovation Center of Suzhou Nano Science and

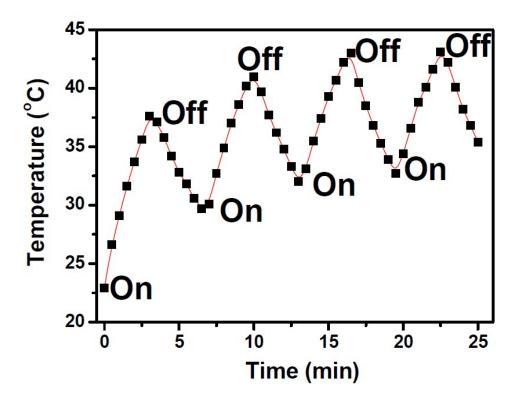
Technology, Soochow University, Suzhou, Jiangsu 215123, China

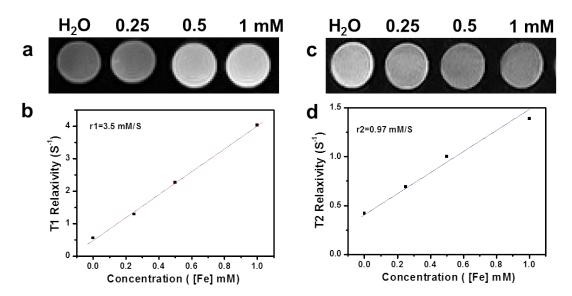

² Departments of Radiology and Medical Physics, University of Wisconsin-Madison,

Wisconsin 53705, United States


³ Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China Email: <u>lcheng2@suda.edu.cn; WCai@uwhealth.org</u>


Supporting Figure S1. FTIR spectra of the as-prepared GA and Fe-GA CPNs. The infrared intensity of Fe-GA CPNs at 1250 cm⁻¹ (the HO-C stretching band) was lower than that of GA, indicating that the HO-C phenolic hydroxyl group of GA coordinated with Fe^{3+} .


Supporting Figure S2. TEM images of the synthesized Fe-GA CPNs. From the TEM image, we can find the size is uniform with the diameter ~ 5 nm.


Supporting Figure S3. A photo of Fe-GA CPNs in 0.9 % NaCl salt solution and water for 24 h. Fe-GA CPNs without PEGylation would be aggregated in salt solution though the surface protected by PVP.

Supporting Figure S4. FTIR spectra of the as-prepared Fe-GA and Fe-GA-PEG CPNs. Various peaks of increased intensity from 1000 to 1400 cm⁻¹ in the Fe-GA-PEG CPNs were likely due to stretching vibrations of the -C-O bond in PEG.

Supporting Figure S5. Temperature variations of Fe-GA-PEG CPNs (0.4 mg/mL) under the irradiation by the 808-nm laser at the power density of 0.8 W/cm² for 4 cycles (6 min of irradiation for each cycle).

Supporting Figure S6. MR contrasting ability of Fe-GA-PEG CPNs. (**a&c**) T_1 (**a**) and T_2 (**b**) weighted MR images of Fe-GA-PEG CPNs with various Fe³⁺concentrations. (**b&d**) The Fe-GA concentration dependent T_1 relaxation rates (**b**) and T_2 relaxation rates (**d**) of Fe-GA-PEG CPNs. The longitudinal relaxivity (r_1) and transverse relaxivity (r_2) were determined to be 3.5 and 0.97 mM⁻¹S⁻¹, respectively.