Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Supporting information

Silicene growth through island migration and coalescence

Mathew J. Cherukara 1,1,† , Badri Narayanan 2,† , Henry Chan 3 , Subramanian K.R.S. Sankaranarayanan 3,4*

¹X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439

²Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439

³Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439

⁴Computation Institute, University of Chicago

¹ Corresponding authors: ssankaranarayanan@anl.gov, mcherukara@aps.anl.gov

[†] These authors contributed equally to the work

Supporting movie 1: Nucleation and growth of silicene monolayers on Ir (111) at 300 K with a deposition rate of 1000 atoms/ns.

Supporting movie 2: Nucleation and growth of silicene monolayers on Ir (111) at 500 K with a deposition rate of 1000 atoms/ns.

Supporting movie 3: Nucleation and growth of silicene monolayers on Ir (111) at 700 K with a deposition rate of 1000 atoms/ns.