Supporting Information:

Analogous of Self-assembly and Crystallization: A Chloride-directed Orientated Selfassembly of Cu Nanoclusters and Subsequent growth of Cu_{2-x}S Nanocrystals

Jiale Liu,^a Ye Tian,^a Zhennan Wu,^a Lin Ai,^a Yi Liu,^a Jianli Cui,^{b,}* Weili Yu,^c Hao Zhang,^{a,*} and Bai Yang^a

^{*a*} State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China. E-mail: hao zhang@jlu.edu.cn.

^b Department of Hand & Foot Surgery, The First Hospital of Jilin University, Changchun 130021, P. R. China. E-mail: tsuijianli@126.com.

^{*c*} The China-US Joint Laboratory, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun, 130033, P. R. China.

Figure S1. TEM images of the self-assembly architectures of Cu nanoclusters that are prepared with CuCl₂-to-CuAc₂ molar feed ratio of 0/10 (a), 0.5/9.5 (b), 1/9 (c), 2/8 (d), 3/7 (e), 5/5 (f), 7/3 (g) and 10/0 (h).

Figure S2. High magnification TEM images (a-c) and corresponding size distribution (d-f) of Cu SANWs (a, d), SANRs (b, e) and SASs (c, f) that are prepared with the CuCl₂-to-CuAc₂ molar feed ratio of 0/10 (a, d), 2/8 (b, e) and 10/0 (c, f).

Figure S3. MALDI-TOF MS (a) and UV-vis absorption spectra (b) of the self-assembly architectures of Cu nanoclusters that are prepared with $CuCl_2$ -to- $CuAc_2$ molar feed ratio of 0/10, 2/8 and 10/0, which correspond to Cu SANWs, SANRs and SASs, respectively.

Figure S4. Cu LMM XAES spectra of Cu SANWs, SANRs and SASs that are prepared with the CuCl₂-to-CuAc₂ molar feed ratio of 0/10, 2/8 and 10/0. As to different self-assembly architectures, the Cu(I)/Cu(0) molar ratio are fixed at 1/0.41, showing the unchanged composition of Cu(0)₄Cu(I)₁₀DT₁₀.

Figure S5. XPS survey spectrum (a) and Cl 2p spectrum (b) of Cu SANWs, SANRs and SASs. The Cl 2p spectrum indicates the different content of Cl⁻.

Figure S6. EDX (a) and the magnified spectra (b) of Cu SANWs, SANRs and SASs, which indicate that the real Cu-to-Cl atomic ratio is 6.89 and 3.55 in Cu SANRs and SASs. However, there is no Cl⁻ in Cu SANWs.

Figure S7. Small-angle (a) and wide-angle (b) XRD patterns of Cu SANWs, SANRs and SASs.

Figure S8. Small-angle (a) and wide-angle (b) XRD patterns of CuAc₂.

Figure S9. The process tracking small-angle (a) and wide-angle (b) XRD patterns of Cu₂S nanorods that are prepared at 160 °C, 210 °C, 220 °C, 220 °C for 10 min, 220 °C for 40 min, and 220 °C for 120 min.

Figure S10. The process tracking steady-state absorption spectra of Cu₂S nanorods that are prepared at 160 °C, 210 °C, 220 °C, 220 °C for 10 min, 220 °C for 40 min, and 220 °C for 120 min.

Figure S11. EDX spectrum of $Cu_{2-x}S$ nanorods, which reveals the Cu-to-S molar ratio of 2:1.

Figure S12. HRTEM images of Cu_2S nanoparticles (a) and nanorods (b) which are prepared at 220 °C for 40 min and 120 min using $CuAc_2$ as the Cu source.

Figure S13. The process tracking small-angle (a) and wide-angle (b) XRD patterns of Cu_2S nanodisks that are prepared at 160 °C, 210 °C, 220 °C, 220 °C for 10 min, 220 °C for 40 min and 220 °C for 120 min.

Figure S14. EDX spectrum of $Cu_{2-x}S$ nanodisks, which reveals the Cu-to-S molar ratio of 2:1.

Figure S15. Up (a) and side (b) HRTEM images of Cu₂S nanodisks that are prepared at 220 °C for 120 min with CuCl₂-to-CuAc₂ molar feed ratio of 2/8.

Figure S16. The process tracking steady-state absorption spectra of Cu₂S nanodisks that are prepared at 160 °C, 210 °C, 220 °C, 220 °C for 10 min, 220 °C for 40 min, and 220 °C for 120 min.

Figure S17. AFM image of $Cu_{1.8}S$ nanosheets that are prepared at 220 °C for 120 min using $CuCl_2 \cdot 2H_2O$ as the Cu source.

Figure S18. The process tracking small-angle (a) and wide-angle (b) XRD patterns of Cu_{1.8}S nanosheets that are prepared at 160 °C, 210 °C, 220 °C, 220 °C for 10 min, 220 °C for 40 min, and 220 °C for 120 min.

Figure S19. The process tracking steady-state absorption spectra of Cu_{1.8}S nanosheets that are prepared at 160 °C, 210 °C, 220 °C, 220 °C for 10 min, 220 °C for 40 min, and 220 °C for 120 min.

Figure S20. HRTEM images of Cu_2S nanosheets that are prepared at 220 °C for 40 min using $CuCl_2 \cdot 2H_2O$ as the Cu source.

Figure S21. Steady-state absorption spectra of $Cu_{2-x}S$ nanocrystals that are prepared with $CuCl_2$ -to- $CuAc_2$ molar feed ratio of 0/10, 0.5/9.5, 1/9, 2/8, 3/7, 5/5, 7/3 and 10/0.

The ratio of CuCl ₂ ·2H ₂ O	Diameter along (001) (nm)	Stdev	Thickness along [001] (nm)	Stdev	Diameter- thickness ratio	Stdev
0	9.94	1.10	72.52	29.12	0.16	0.06
5	15.65	2.50	8.64	0.73	1.81	0.23
10	25.52	2.80	12.95	0.94	1.97	0.11
20	35.52	4.85	11.63	0.71	3.05	0.39
30	36.77	2.43	10.88	1.06	3.41	0.37
50	41.25	5.28	9.74	1.11	4.29	0.80
70	56.85	16.11	8.04	1.24	7.24	3.33
100	93.44	24.84	4.36		21.43	

Table 1. Summary of the size and diameter-to-thickness ratio of $Cu_{2-x}S$ nanocrystals that areprepared with different CuCl₂-to-CuAc₂ molar feed ratio.

Figure S22. TEM images of the self-assembly architectures of Cu nanoclusters at 160 °C (a, c) and the $Cu_{2-x}S$ nanocrystals fromed at 220 °C for 120 min (b, d) using $CuBr_2$ (a, b) and CuI (c, d) as the source.

Figure S23. (a) The unit cell of hexagonal Cu_2S (chalcocite, JCPDS No. 26-1116). Crystal atom configuration ball-and-stick model diagrams of hexagonal Cu_2S along c axis (b), along b axis (c) and along b slightly inclines to c axis (d).

Figure S24. (a) The unit cell of hexagonal $Cu_{1.8}S$ (Digenite, JCPDS No. 23-0962). Crystal atom configuration ball-and-stick model diagrams of hexagonal Cu_2S along c axis (b), along b axis (c) and along b slightly inclined to c axis (d).