Electronic Supplementary Information (ESI)

High-Index Faceted CuFeS₂ Nanosheets with Enhanced Behavior for Boosting Hydrogen Evolution Reaction

Yuxuan Li,⁺ Yu Wang,⁺ Brian Pattengale, Jie Yin, Li An, Fangyi Cheng, Yafei Li,* Jier Huang,* and Pinxian Xi*

Y. Li, J. Yin, L. An, Prof. P. Xi

State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China

E-mail: xipx@lzu.edu.cn

Y. Wang, Prof. Y. Li

College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing, 210046, P. R. China

E-mail: liyafei@njnu.edu.cn

B. Pattengale, Prof. J. Huang

Department of Chemistry, Marquette University, Milwaukee, Wisconsin, 53201, United States

E-mail: jier.huang@marquette.edu

Prof. F. Cheng

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China

⁺These two authors contributed equally to this work.

Figure S1. XRD patterns of the as-obtained CuFeS₂ NSs and commercial bulk chalcopyrite.

Figure S2. XRD patterns of (a) CuS NSs and (b) FeS₂ NSs.

Figure S3. TEM images of (a) CuS NSs and (b) FeS₂ NSs.

Figure S4. Schematic representation of the relative orientation of $(\overline{0^2}4)$, (112) and (200) facets in tetragonal CuFeS₂ structure.

Figure S5. EXAFS data (dotted line) and fits (solid line) in R-space for (**a**) CuS NSs Cu K-Edge, (**b**) FeS₂ NSs Fe K-Edge, (**c**) CuFeS₂ NSs Cu K-Edge, and (**d**) CuFeS₂ NSs Fe K-Edge.

Figure S6. EXAFS data (dotted line) and fits (solid line) in K-space for (a) CuS Cu K-Edge,
(b) FeS₂ Fe K-Edge, (c) CuFeS₂ Cu K-Edge, and (d) CuFeS₂ Fe K-Edge.

Figure S7. The exchange current density for different catalysts in 0.5 M H₂SO₄.

Figure S8. The amount of theoretically calculated (red line) and experimentally measured (black line) hydrogen versus time for CuFeS₂ NSs in 0.5 M H₂SO₄.

Figure S9. (a) CVs of bare CFP and CuFeS₂ NSs in pH = 7 phosphate buffer between -0.2 and 0.6 V vs. RHE with a scan rate of 50 mV s⁻¹. (b) Turnover frequencies of CuFeS₂ NSs in 0.5 M H₂SO₄.

Figure S10. Cyclic voltammograms of (**a**) $CuFeS_2 NSs$, (**b**) $CuFeS_2 - b NSs$, (**c**) Bulk chalcopyrite ($CuFeS_2$), (**d**) CuS NSs and (**e**) $FeS_2 NSs$, with various scan rates in 0.5 M H₂SO₄.

Figure S11. (a) The XRD patterns, (b) TEM image and (c) HRTEM image of CuFeS₂ - b NSs.

Figure S12. Chronoamperometric response curves for HER stability of $CuFeS_2$ NSs in 0.5 M H_2SO_4 .

Figure S13. (a) The XRD patterns, (b) TEM image and (c) HRTEM image of CuFeS₂ NSs after stability measurement in 0.5 M H₂SO₄.

Figure S14. XPS spectra of (**a**) Cu 2p, (**b**) Fe 2p and (**c**) S 2p of CuFeS₂ NSs after stability measurement in 0.5 M H₂SO₄.

Table S1. EXAFS Fitting results for Cu-center (top rows) and Fe center (bottom row) for the three catalysts investigated. CNs = Coordination Numbers, R = Vector distance (± 0.02 Å), σ^2 = Debye-Waller factor (± 0.001 Å²).

Vector	CuS NSs		FeS ₂ NSs			CuFeS ₂ NSs			
	CNs	R(Å)	$\sigma^2(\text{\AA}^2)$	CNs	R(Å)	$\sigma^2(\text{\AA}^2)$	CNs	R(Å)	$\sigma^2(\text{\AA}^2)$
Cu ₂ -S ₂	3	2.41	0.004						
Cu_1 - S_1	3	2.25	0.004	-	-	-	4	2.28	0.01
Cu_1 - S_2	1	2.57	0.004						
Fe-S	-	-	-	6	2.26	0.006	4	2.26	0.008

Table S2. EXAFS Fitting results for Cu-center (top rows) and Fe center (bottom row) for the CuFeS₂ NSs before and after HER. CN = Coordination Numbers, R = Vector distance (± 0.02 Å), σ^2 = Debye-Waller factor (± 0.001 Å²).

	CuFeS	2 NSs befor	re HER	CuFeS ₂ NSs after HER			
vector	CNs	R(Å)	$\sigma^2(\text{\AA}^2)$	CNs	R(Å)	$\sigma^2(\text{\AA}^2)$	
Cu-S	4	2.28	0.01	3.7	2.28	0.00023	
Fe-S	4	2.26	0.008	2.6	2.26	0.00016	

Catalyst	Loading (mg cm ⁻²)	η _{onset} (mV vs. RHE)	η ₁₀ (mV vs. RHE)	Tafel slope (mV dec ⁻¹)	j o	Reference
W ₂ C/MWNT	~ 0.56	~ 50	123	45	-	1
Mo ₂ C@NC	~ 0.28	60	124	60	0.096	2
CoSe ₂ NW/CC	~ 1.3	-	130	32	-	3
Mo ₂ C/NCF	~ 0.28	85	144	55	-	4
3DHP- Mo ₂ C	0.28	35	97	60	0.28	5
MoSSe	~ 0.28	-	164±2	48±2	-	6
1T MoS ₂	0.05	-	~ 200	~ 40	-	7
Mo ₂ C-NCNT	~ 3	72	147	71	0.1146	8
MoC _x	0.8	~ 25	142	53	0.023	9
a-Mo ₂ C	0.102	-	198	56	-	10
CuFeS ₂ NSs	~ 0.2	28.1	88.7	47	0.35	This Work

Table S3. Summary on the HER performance of reported catalysts by using a graphite rod as the counter electrode in 0.5 M H₂SO₄.

Catalyst	TOF Overpotential at the		Reference	
	(\$-1)	corresponding ror (mv)		
Defect-rich MoS ₂ NSs	0.725	300	11	
MoS ₃ -CV films	0.8	220	12	
	0.725	75		
CoP/CC	4	240	13	
	0.8	82		
СоР	4	246	14	
Ni ₂ P/Ti	0.725	205	15	
	0.8	128	16	
$m-Mo_2C/G(2:1)$	4	233		
MoO ₃ -MoS ₂	4	272	17	
	0.725	75		
CuFeS ₂ NSs	0.8	80	This work	
	4	240		

Table S4. Summary on the TOF of reported catalysts.

References

- Q. Gong, Y. Wang, Q. Hu, J. Zhou, R. Feng, P. N. Duchesne, P. Zhang, F. Chen, N. Han, Y. Li, C. Jin, Y. Li, S.-T. Lee, *Nat. Commun.* 2016, 7, 13216-13223.
- Y. Liu, G. Yu, G.-D. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, *Angew. Chem. Int. Ed.* 2015, 54, 10752-10757.
- Q. Liu, J. Shi, J. Hu, A. M. Asiri, Y. Luo, X. Sun, ACS Appl. Mater. Interfaces 2015, 7, 3877-3881.
- 4. Y. Huang, Q. Gong, X. Song, K. Feng, K. Nie, F. Zhao, Y. Wang, M. Zeng, J. Zhong, Y. Li, ACS Nano 2016, 10, 11337-11343.
- 5. H. Ang, H. Wang, B. Li, Y. Zong, X. Wang, Q. Yan, small 2016, 12, 2859-2865.
- Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng, H. Ye, M. Zeng, L. Xie, Z. Liu, Y. Li, ACS Catal. 2015, 5, 2213-2219.
- D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, *Nano Lett.* 2013, 13, 6222-6227.
- 8. K. Zhang, Y. Zhao, D. Fu, Y. Chen, J. Mater. Chem. A 2015, 3, 5783-5788.
- 9. H. Wu, B. Xia, L. Yu, X.-Y. Yu, X. Lou, Nat. Commun. 2015, 6, 6512-6519.
- L. Ma, L. R. L. Ting, V. Molinari, C. Giordano, B. S. Yeo, J. Mater. Chem. A, 2015, 3, 8361-8368.
- J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. Lou, Y. Xie, *Adv. Mater*. 2013, 25, 5807-5813.
- 12. D. Merki, S. Fierro, H. Vrubel, X. Hu, Chem. Sci. 2011, 2, 1262-1267.
- 13. J. Tian, Q. Liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc. 2014, 136, 7587-7590.
- 14. J. Li, X. Zhou, Z. Xia, Z. Zhang, J. Li, Y. Ma, Y. Qu, J. Mater. Chem. A 2015, 3, 13066-13071.
- 15. Z. Pu, Q. Liu, C. Tang, A. M. Asiri, X. Sun, Nanoscale 2014, 6, 11031-11034.
- 16. L. Huo, B. Liu, G. Zhang, J. Zhang, ACS Appl. Mater. Interfaces 2016, 8, 18107-18118.
- Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, T. F. Jaramillo, *Nano Lett.* 2011, **11**, 4168-4175.