Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	Supporting Information
15	One-Pot Mass Preparation of MoS ₂ /C Aerogel for High-
16	Performance Supercapacitors and Lithium-Ion Batteries
17	
18	Yan Zhang, Ting He, Guanglei Liu, Lianhai Zu and Jinhu Yang*
19	Corresponding author E-mail: yangjinhu@tongji.edu.cn
20	

2 Fig. S1 Optical photographs of the obtained precursor gel in a larger scale.

5 Fig. S2 (a) Nitrogen adsorption-desorption isotherms and (b) pore-size distribution
6 curves of the MoS₂ composite aerogel.

2 Fig. S3 TEM image of the MoS_2/C composite aerogel.

5 Fig. S4 Energy dispersive X-ray spectrometry (EDS) spectrum of the MoS₂/C
6 composite aerogel.

1

2 Fig. S5 SEM image of MC-3 overloaded with MoS₂.

3

4 Tab. S1 Summary of electrochemical performance comparisons of various MoS_2/C

_	• .	1	1 . 1		•	• .
5	aamnaaitaa	no boou	alaatrada	motoriola	110 011	noroonooitora
.)	COHIDOSHES	USEU AS			111 50	
•	•••••••••		•••••••••			.p • • • • • • • • • • • • • • • • • • •

	Material	Capacity at (X) Current Density	Coulombic Efficiency after (Y) Cycles	At Current Density
a	MoS ₂ /RGO@PANI	1224 F g ⁻¹ (1 A g ⁻¹)	82.5% (3 000)	10 A g ⁻¹
b	three-dimensional graphene/MoS ₂	410 F g ⁻¹ (1 A g ⁻¹)	80.3% (10 000)	2 A g ⁻¹
c	MoS ₂ /N-doped graphene	245 F g ⁻¹ (0.25 A g ⁻¹)	91.3% (1 000)	2 A g ⁻¹
d	MoS ₂ /microporous carbons	189 F g ⁻¹ (1 A g ⁻¹)	98% (3 000)	10 A g ⁻¹
e	MoS ₂ /PANI	552 F g^{-1} (0.5 A g^{-1})	79% (6 000)	1 A g ⁻¹
	This work	712.6 F g ⁻¹ (1 A g ⁻¹)	97.3% (13 000)	6 A g ⁻¹

6 Note: a, b, c, d and e correspond to Ref.s 29, 30, 31, 32 and 33, respectively, in the
7 main text.

8

Sample	Mass percentage of MoS ₂ (%)	Mass percentage of C (%)
MC-1	22.9	77.1
MC-2	41.3	58.7
MC-3	59.2	40.8

Tab. S2 The mass percentage of MoS_2 and C in the three samples, calculated based

2 on ICP results.